

INTEGRATING ANNUAL SENTINEL-1/2 TIME SERIES AND FOREST INVENTORY DATA FOR MACHINE LEARNING-BASED TREE SPECIES CLASSIFICATION AT A NATIONAL SCALE

Joint SCERIN and MedRIN Workshop 16-19 July 2024

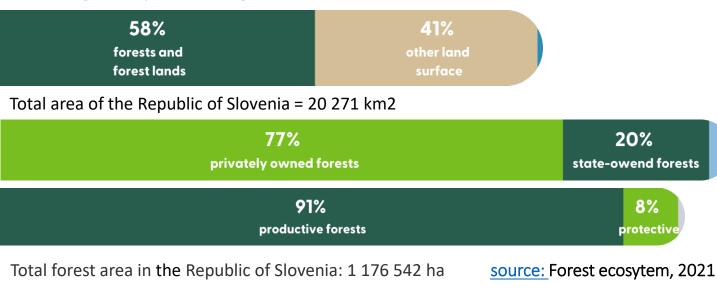
¹ Ana POTOČNIK BUHVALD

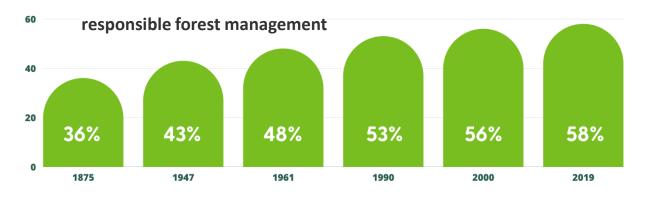
ana.potocnik-buhvald@fgg.uni-lj.si

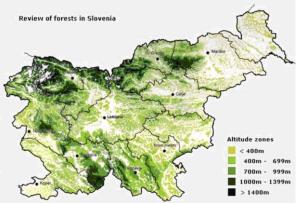
¹ prof. dr. Krištof OŠTIR kristof.ostir@fgg.uni-lj.si ² dr. Mitja SKUDNIK mitja.skudnik@bf.uni-lj.si

1 University of Ljubljana, Faculty of Civil and Geodetic Engineering, Chair of Geoinformatics and Real Estate Cadastres

2 University of Ljubljana, Biotehnical Faculty, Department of Forestry and Renewable Forest Resources, Chair of Landscape Science and Geoinformatics and Slovenian Forestry Institute

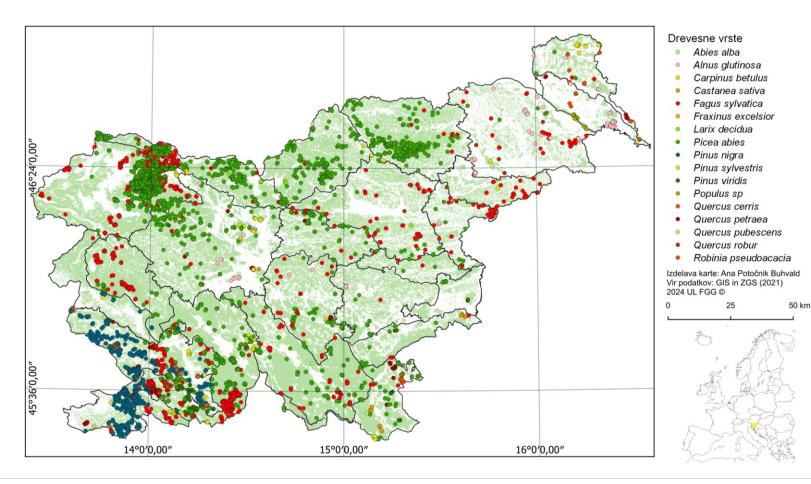

Presentation

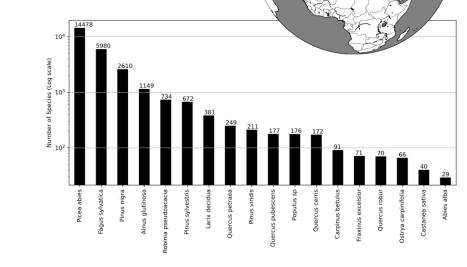

- Study area
- Reference dataset
- Input Sentinel-1/2 time series
- ML algorithm
- Tree species classification results
- Margin value
- Features importance



Study area

• Slovenia is one of the European countries with the highest percentage of forest cover





Reference dataset for tree species classification

Reference data for this study were derived from the Slovenian **stand map** for the reference year 2021 (author Slovenian Forest Service).

More than 27 000 points/pixels.

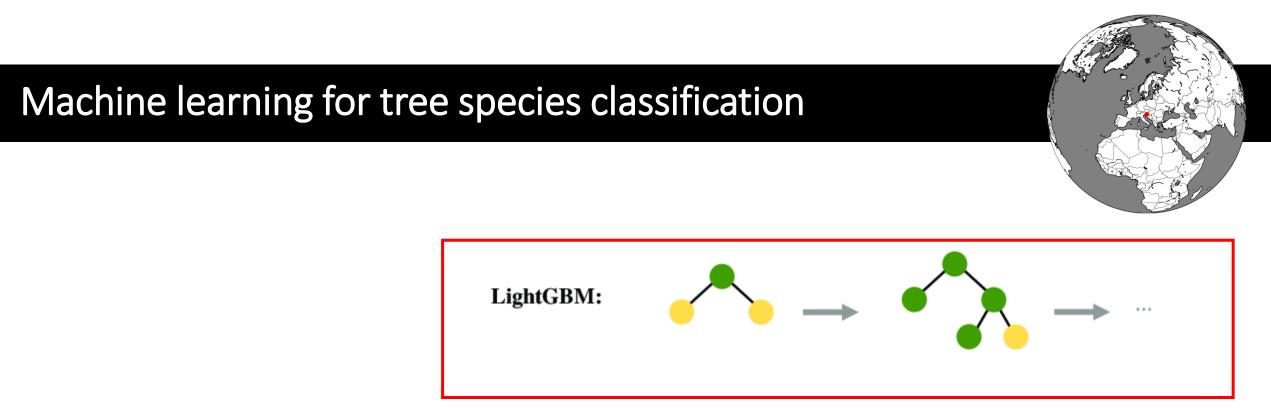
Forest inventory reference dataset for SP classification

• Sample point are made out of homogenous stands (centroid of stand) with 98 % SP1.

	Tree Specie	Number for Training	Number for Testing	Wood stock
Map name		Samples	Samples	[%]
1	Picea abies	14,478	9,700	28,2
2	Fagus sylvatica	5,980	4,007	31,9
14	Pinus nigra	2,610	1,749	1,4
3	Alnus glutinosa	1,149	770	1,1
12	Robinia pseudoacacia	734	492	< 1
4	Pinus sylvestris	672	450	4,2
5	Larix decidua	381	255	1,6
6	Quercus petraea	249	167	5,1
13	Pinus viridis	211	141	< 1
16	Quercus pubescens	177	119	< 1
48	Populus sp	176	118	< 1
17	Quercus cerris	172	115	< 1
10	Carpinus betulus	91	61	2,7
8	Fraxinus excelsior	71	48	1,0
9	Quercus robur	70	47	1,2
15	Ostrya carpinifolia	66	44	1,3
11	Castanea sativa	40	27	1,5
7	Abies alba	29	19	7,9

Input feature for machine learning tree species classification

- Sentinel-1 coherence SITS (ASC_VV, _VH and DES_VV, _VH)
- Sentinel-2 spectral bands and indices (NDVI, IRECI)
- Combined Sentinel-1 and -2 SITS



Remote Sensing of Environment Volume 280, October 2022, 113208

Sentinel-1 interferometric coherence as a vegetation index for agriculture

Arturo Villarroya-Carpio ª, Juan M. Lopez-Sanchez ª 🞗 🖾 , Marcus E. Engdahl ^b

	P_ID	TIMESTAMP	B01	B02	B03	B04	B05	B06	B07	B08	B8A	B09	B11	B12	NDVI	IRECI	ASC_VV	ASC_VH	DES_VV	DES_VH
0	629195	2019-01-03	NaN	NaN	0.474342	0.462271	0.561583	0.597292												
1	629195	2019-01-06	0.0025	0.0277	0.0542	0.0711	0.0944	0.1460	0.1653	0.1852	0.1862	0.2480	0.2044	0.1374	0.445181	0.145691	NaN	NaN	NaN	NaN
2	629195	2019-01-09	NaN	NaN	0.558348	0.393677	0.715511	0.570220												
3	629195	2019-01-11	0.0112	0.0277	0.0462	0.0662	0.0966	0.1437	0.1603	0.1670	0.1867	0.2393	0.2050	0.1329	0.432247	0.139981	NaN	NaN	NaN	NaN
4	629195	2019-01-14	0.0205	0.0357	0.0623	0.0759	0.1045	0.1520	0.1689	0.1766	0.1917	0.2475	0.2162	0.1445	0.398812	0.135273	NaN	NaN	NaN	NaN
2228169	259918558	2019-12-14	0.0032	0.0125	0.0275	0.0310	0.0446	0.0635	0.0729	0.0873	0.0881	0.1125	0.1104	0.0710	0.475909	0.059656	NaN	NaN	NaN	NaN
2228170	259918558	2019-12-17	NaN	NaN	0.262350	0.273017	0.205720	0.259237												
2228171	259918558	2019-12-23	NaN	NaN	0.221484	0.291191	0.296517	0.269125												
2228172	259918558	2019-12-24	0.0002	0.0016	0.0205	0.0245	0.0441	0.0605	0.0685	0.0807	0.0837	0.1097	0.1347	0.0977	0.534221	0.060363	NaN	NaN	NaN	NaN
2228173	259918558	2019-12-29	0.0242	0.0572	0.0692	0.0912	0.1046	0.1398	0.1551	0.1910	0.1807	0.1590	0.2397	0.1761	0.353650	0.085404	0.532498	0.518855	0.210954	0.214235

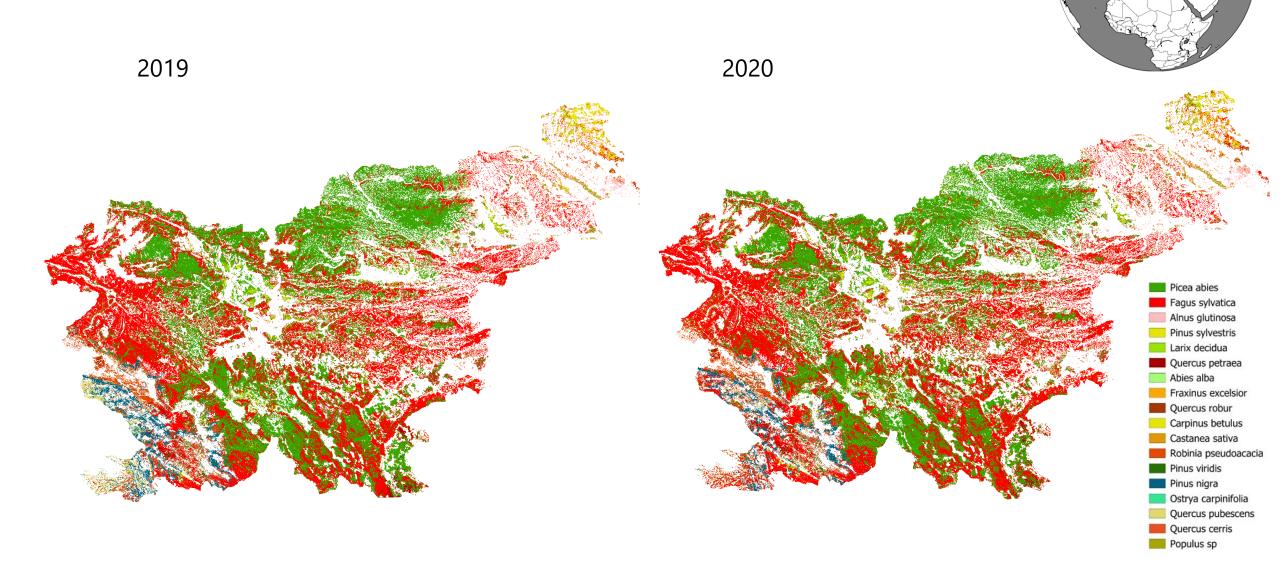
- raw SITS (not interpolating time series gaps to consistent 5-day intervals, etc.);
- weighed classes (to make more cosistent reference dataset);
- did not include environmental and other additional data in classification analysis because we want to evaluate Sentinel-1 coherence, Sentinel-2 and combined SITS.

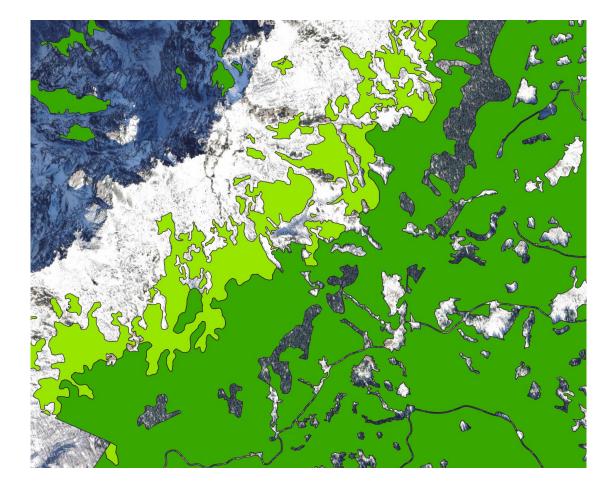
Tree species classification results

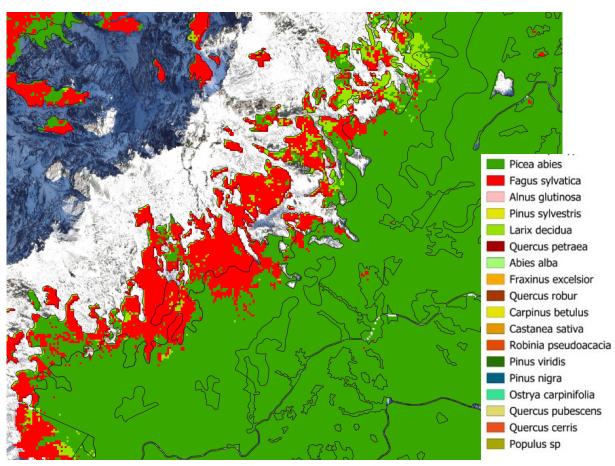
Sentinel-2

Sentinel-1

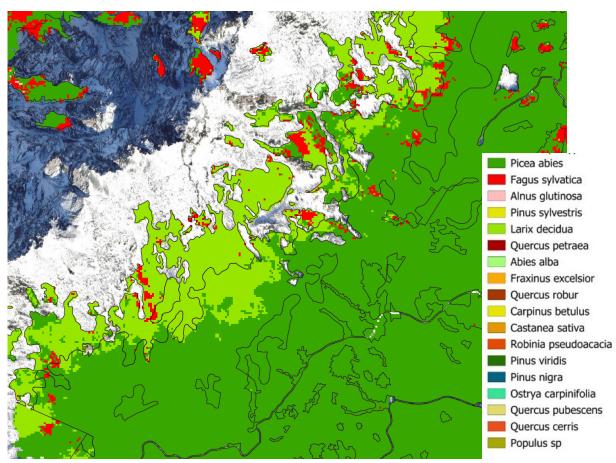
combined Sentinel-1/2

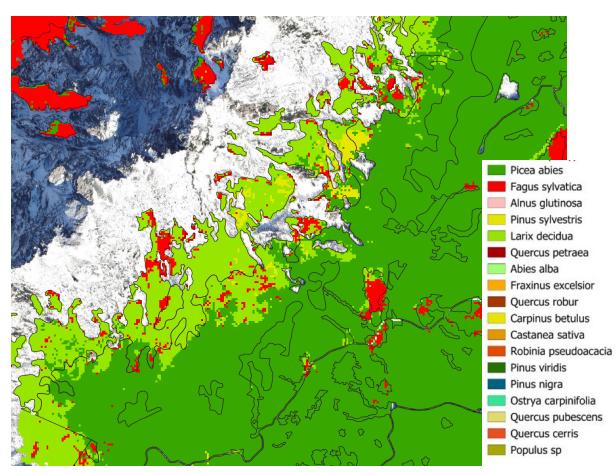

Accuracy: 0.9031578947368422 Classification Report:					Accuracy: 0.80 Classificatior		Accuracy: 0.9042659279778393 Classification Report:								
Classification	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support	
1	0.94	0.95	0.94	4756	1	0.88	0.89	0.88	4756	1	0.94	0.95	0.94	4756	
2	0.89	0.90	0.89	1992	2	0.71	0.78	0.75	1992	2	0.88	0.91	0.90	1992	
3	0.79	0.87	0.83	373	3	0.60	0.69	0.64	373	3	0.77	0.87	0.82	373	
4	0.82	0.70	0.75	223	4	0.65	0.35	0.46	223	4	0.83	0.70	0.76	223	
					5	0.76	0.59	0.67	128	5	0.86	0.87	0.86	128	
5	0.85	0.89	0.87	128	6	0.56	0.11	0.18	91	6	0.75	0.43	0.55	91	
6	0.74	0.49	0.59	91	7	0.00	0.00	0.00	15	7	0.50	0.07	0.12	15	
7	1.00	0.07	0.12	15	8	0.00	0.00	0.00	31	8	0.50	0.10	0.16	31	
8	0.50	0.10	0.16	31	9	0.67	0.11	0.18	19	9	0.50	0.26	0.34	19	
9	0.67	0.32	0.43	19	10	1.00	0.04	0.07	26	10	0.62	0.19	0.29	26	
10	0.43	0.23	0.30	26	11	0.00	0.00	0.00	21	11	0.83	0.24	0.37	21	
11	1.00	0.29	0.44	21	12	0.56	0.55	0.56	223	12	0.81	0.82	0.81	223	
12	0.77	0.80	0.79	223	12	0.38	0.24	0.29	59	13	0.62	0.59	0.61	59	
13	0.62	0.63	0.62	59	13	0.86	0.24	0.29	895	14	0.93	0.96	0.95	895	
14	0.93	0.96	0.94	895						15	0.55	0.32	0.40	19	
15	0.55	0.32	0.40	19	15	1.00	0.21	0.35	19	16	0.64	0.68	0.66	57	
16	0.60	0.63	0.62	57	16	0.58	0.26	0.36	57	10	0.74	0.76	0.75	45	
17	0.72	0.69	0.70	45	17	0.56	0.42	0.48	45	18	0.74	0.83	0.80	52	
18	0.81	0.85	0.83	52	18	0.57	0.54	0.55	52	10	0.78	0.05	0.00	52	
										accuracy			0.90	9025	
accuracy			0.90	9025	accuracy			0.80	9025	macro avg	0.73	0.59	0.62	9025	
macro avg	0.76	0.59	0.62	9025	macro avg	0.57	0.37	0.41	9025	weighted avg	0.90	0.90	0.02	9025	
weighted avg	0.90	0.90	0.90	9025	weighted avg	0.79	0.80	0.79	9025	weighted avg	0.90	0.90	0.90	3025	
werghten avg	0.50	0.50	0.50	5025						Elecopo: 0. 9002568913826344					

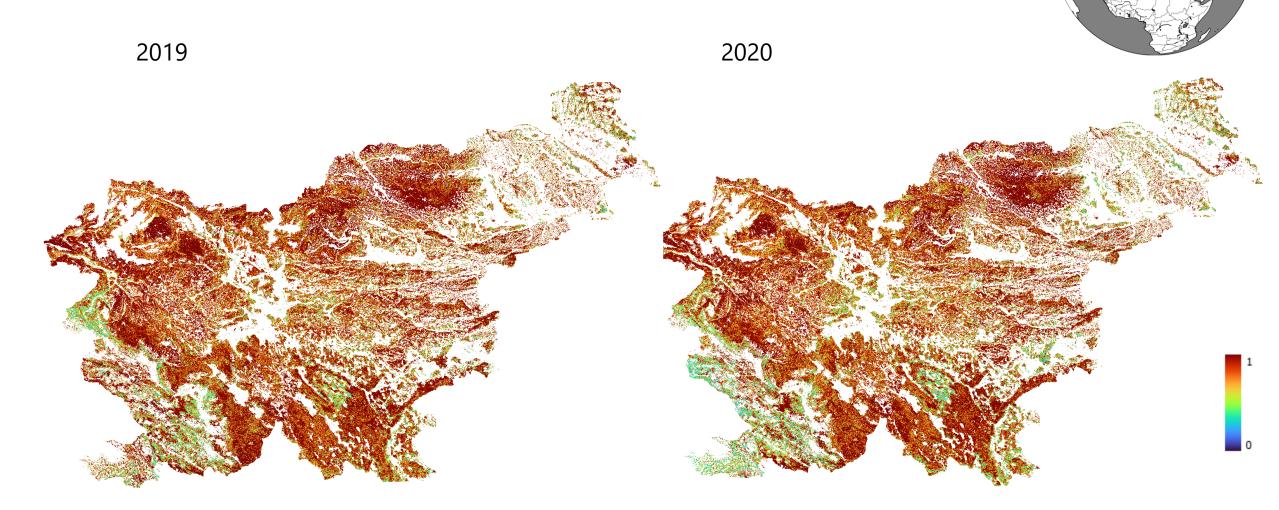

F1-score: 0.8996436875516021

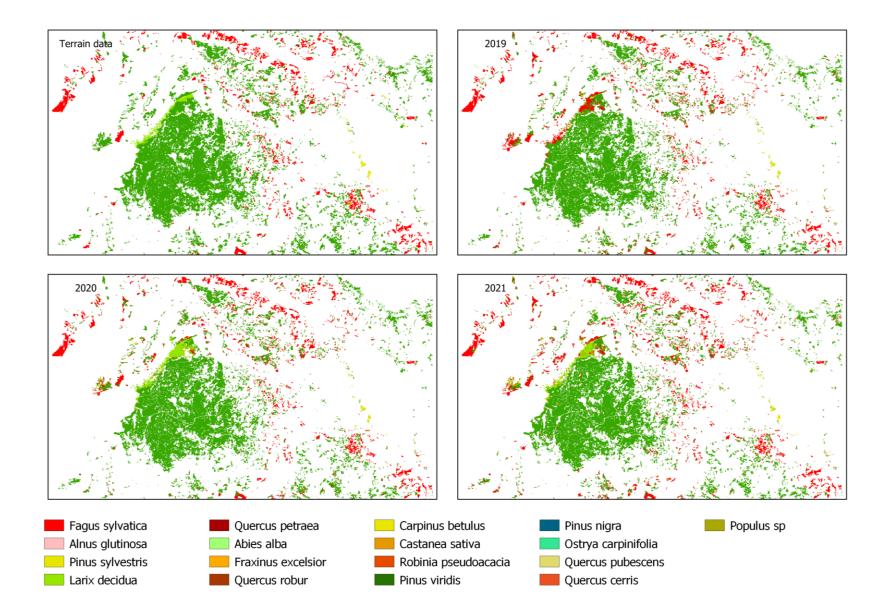

F1-score: 0.7922246059043783

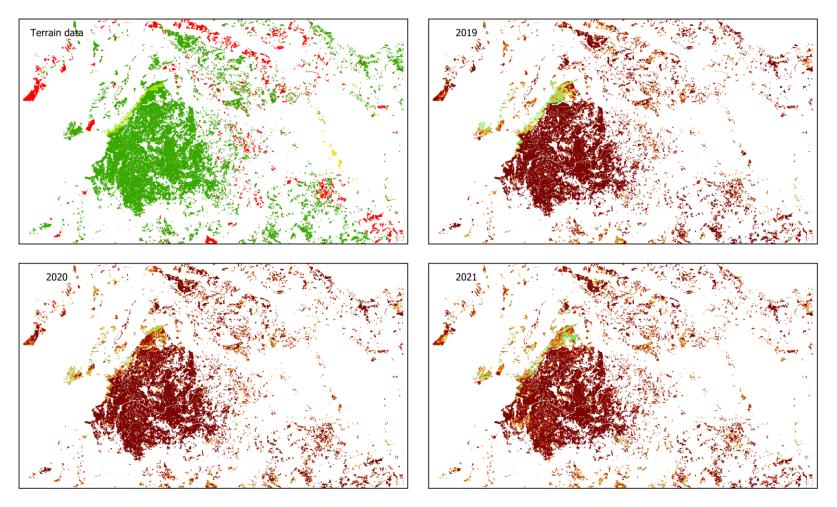
F1-score: 0.9002568913826344


Tree species classification results (maps)





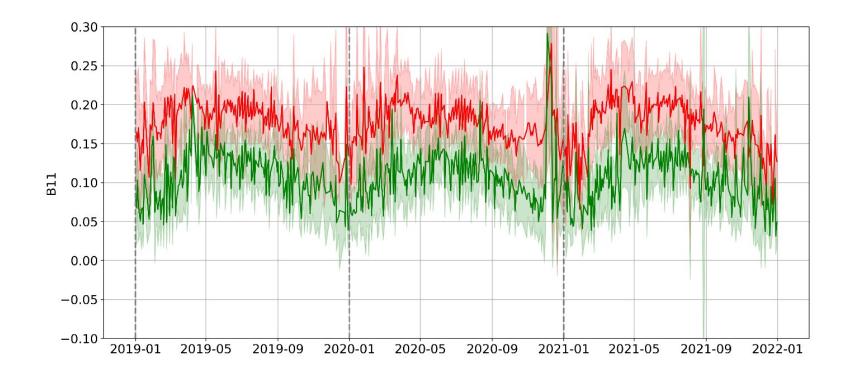




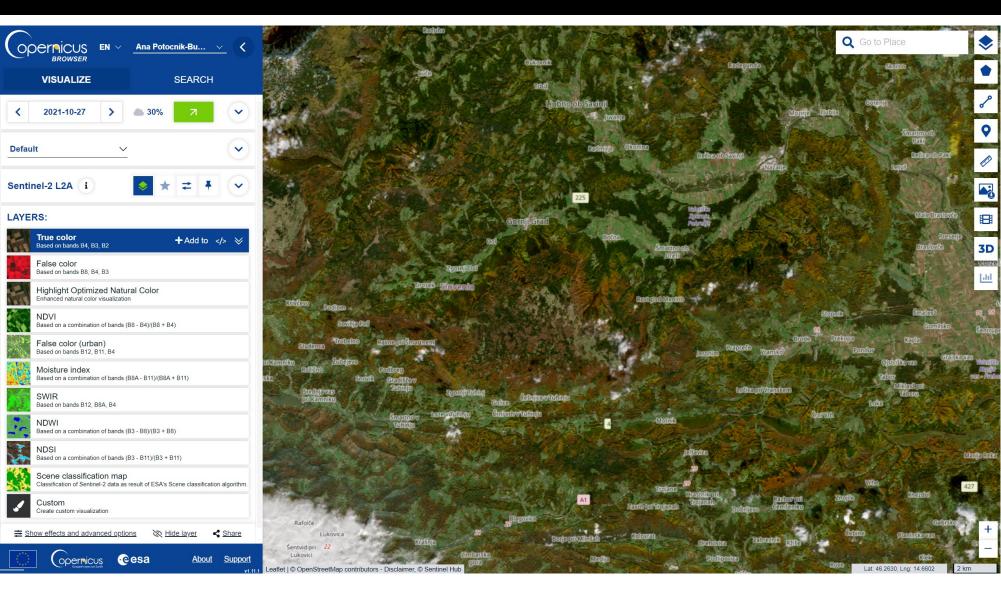
Tree species classification results (margin value)

The margin value is the output of the decision trees combined linearly, which represents the model's confidence in its predictions.

Margin



Feature importance (spectral information)



coniferous / deciduous tree species

Feature importance (time information)

2021-10-27

coniferous / deciduous tree species

vectorized results out of Sentinel-2 classification (2019)

FGG UNIVERSITY OF LJUBLJANA Faculty of Civil and Geodetic Engineering

UNIVERSITY OF LJUBLJANA Biotechnical Faculty

THANK YOU FOR YOUR ATTENTION.

Joint SCERIN and MedRIN Workshop 16-19 July 2024

Ana POTOČNIK BUHVALD ana.potocnik-buhvald@fgg.uni-lj.si prof. dr. Krištof OŠTIR kristof.ostir@fgg.uni-lj.si

dr. Mitja SKUDNIK mitja.skudnik@gozdis.si