

2024 Joint Workshop of the GOFC-GOLD SCERIN & MedRIN Networks

Assessing the Impact of the 2023 Storm Daniel Flood in Pineios River Estuaries

An Analysis of Crop-Type and Inundation Mapping Using Sentinel-2 Imagery

^{1,2}Rizos-Theodoros Chadoulis, ²Ioannis Manakos, ¹Constantine Kotropoulos, ¹Department of Informatics, Aristotle University of Thessaloniki, Greece, ²Centre for Research and Technology, Hellas

The 2023 Storm Daniel significantly affected the Pineios River estuaries, causing widespread flooding and impacting the agricultural landscape. This study aims to assess the floods' impact on the area, utilizing Sentinel-2 imagery for crop-type and inundation mapping.

Clover

3.2. Land Cover & Crop Type Map

2.3. Land Cover/Crop Type Classification

- A Random Forest classifier with 100 trees was employed using Google Earth Engine.
- Summary statistics of the yearly time-series were employed as features.

	Variable	Sentinel-2 Formula used in this study	Landsat ETM+ Formula used by Potapov et al.	Summary statistics
1	Blue	B ₂	TM_1	Minimum, Maximum, Median, Average, Standard deviation, Average between min and Q1, Average between max and Q3, Amplitude min to max, Amplitude Q1 to Q3, Amplitude Q2 to max
2	Green	B_3	TM_2	
3	Red	B_4	TM_3	
4	Visible and Near Infrared (VNIR)	$B_5, B_6, B_7, B_8, B_{8A}$	TM_4	
5	Short Wave Infrared (SWIR)	B_{11}, B_{12}	TM_5, TM_7	
6	Normalized Difference NIR/Green Green NDVI	$\frac{B_9 - B_3}{B_9 + B_3}$	$\frac{TM_4 - TM_2}{TM_4 + TM_2}$	
7	Normalized Difference NIR/Red Normalized Difference Vegetation Index, Calibrated NDVI - CDVI	$\frac{B_8 - B_4}{B_8 + B_4}$	$\frac{TM_4 - TM_3}{TM_4 + TM_3}$	
8	Normalized Difference NIR/SWIR1	$\frac{B_9 - B_{11}}{B_9 + B_{11}}$	$\frac{TM_4 - TM_5}{TM_4 + TM_5}$	
9	Normalized Difference NIR/SWIR2	$\frac{B_9 - B_{12}}{B_9 + B_{12}}$	$\frac{TM_4 - TM_7}{TM_4 + TM_7}$	
10	Normalized Difference SWIR1/SWIR2	$\frac{B_{11} - B_{12}}{B_{11} + B_{12}}$	$\frac{TM_5 - TM_7}{TM_5 + TM_7}$	

2.4. Inundation Mapping methodology

2) An automatic local thresholding* unsupervised methodology for separating inundated

*Kordelas, Georgios A., et al. "Fast and automatic data-driven thresholding for inundation mapping with Sentinel-2 data." Remote Sensing 10.6 (2018): 910.areas from non-inundated ones was employed

4. Inundated VS Total Number of pixels per arable land crop-type

