Comparison of Terrestrial Laser Scanning Algorithms for Tree Shape **Reconstruction in European** beech trees (Fagus sylvatica)

Sergiu Florea

Logical thread

1. Introduction

2. Methods

3. Results

4. Conclusion

•Purpose: To compare different algorithms used in terrestrial laser scanning (TLS) for reconstructing

tree shapes.

					Relation with other land categories
				Carbon stocking, Biological diversity, Forest products	Carbon stocking, Biological diversity, Forest products
			Global warming	Global warming	Global warming
		Biomas	Biomas	Biomas	Biomas
	Multiple resources	Multiple resources	Multiple resources	Multiple resources	Multiple resources
Timber	Timber	Timber	Timber	Timber	Timber
Before 1960	The '60	The '70	The '80	The '90	After 2000

Forest polifunctionality

Largest carbon reservoir

Fresh water source

Renewable resource – timber, firewood

Multiple species habitat – flora & fauna

Extreme weather regulator

Hunting and fishing

Protector of soil

Medicinal herbs

	Tree attribute							
Method	DBH	Н	Stem volume	Aboveground tree volume				
CloudCompare reconstruction methods								
Poisson	no	no	yes	no				
RANSAC	no	no	yes	no				
QSM algorithms								
TreeQSM MATLAB	yes	yes	yes	yes				
3D Forest	yes	yes	no	yes				

•Algorithms Compared: CloudCompare: Poisson Surface Reconstruction and RANSAC

(Random sample consensus)

•TreeQSM: MATLAB-based quantitative structure modeling

•3D Forest: Open-source software for tree structure analysis

- DBH1 3DForest, Randomized Hough Transformation (RHT), circle fitting (most frequent circle)
- DBH2 3DForest, Least Squares Regression
 (LSR), circle fitting (minimizing distance between circle and points)
- DBH3 –3DForest, DBH cloud, circle fitting (inside the point-cloud)
- **DBH4** –TreeQSM algorithm, mean stem diameter between 1.1 and 1.5 m
- DBH5 –TreeQSM, stem at 1.3 meters, fitted cylinders

03 Results DBH Estimation

- High agreement among DBH1,
 DBH2, DBH4, and DBH5.
- Significant discrepancies with DBH3.
- Variability increases with tree size.
- The largest differences were observed for trees with large DBH.

Comparison: H1 (3DForest) vs. H2 (TreeQSM).

- Relatively consistent with a mean difference of 0.31m.
- Differences increase with tree height, especially for trees >20m.

03 Results Stem volume Estimation

Comparison:

- Vst1 (TreeQSM), sum of all stem cylinders
- Vst2 (RANSAC), fits the tree into a cone
- Vst3 (Poisson), fits the tree into a mesh

03 Results Stem volume Estimation

- Poisson method tends to overestimate volume.
- RANSAC shows better agreement with TreeQSM.
- Errors increase with tree size.

03 Results Total volume Estimation

Comparison: Vtot1 (3DForest) vs. Vtot2 (TreeQSM)

- 3DForest systematically produces larger estimates.
- Differences increase with tree size.
- Largest discrepancy observed was 6.9 m³.

04 Conclusions

- DBH Measurement: Cylinder fitting methods (TreeQSM) provide more precise measurements.
- Height Measurement: 3DForest tends to overestimate height.
- Stem Volume Measurement: TreeQSM and RANSAC methods are more reliable.
- Total Volume: TreeQSM produced the fewest abnormalities in crown reconstruction, resulting in the best volume estimation

•Key Takeaways:

- Significant differences exist between algorithms.
- Visual inspection is crucial to detect and correct reconstruction errors.
- TreeQSM is recommended as the most reliable method for tree reconstruction.

Thank you for your attention!

sergiu.florea@unitbv.ro