FLOODPLAIN FORESTS MAPPING USING EARTH OBSERVATIONS AND ARTIFICIAL INTELLIGENCE

Ivan Pilaš Croatian Forest Research Institute, Jastrebarsko, Croatia

Technical objectives

• to tailor and prototype <u>suitable Artificial Intelligence (AI) systems</u> of the rapid high-resolution mapping of the Natura2000 floodplain forest habitats based <u>on</u> <u>the Copernicus EO information</u>; to demonstrate the capabilities of EO-based AI approaches as a powerful alternative to traditional and widely used field survey methods.

• to provide validation of the concept in terms of the **transferability of the EObased AI approaches** to the country scale habitat mapping

AI - the effort to automate intellectual tasks normally performed by humans

FIGURE 2.7. A representation of the tradeoff between flexibility and interpretability, using different statistical learning methods. In general, as the flexibility of a method increases, its interpretability decreases.

- MACHINE LEARNING, GEOBIA Random Forest, Gradient Boosting, Support vector machines, Lasso,...
- DEEP LEARNING Deep (Convolutional) Neural Networks
- BAYES INFERENCE prior knowledge

Natura 2000

- The Habitats Directive presented the foundation for the Natura 2000, the network of protected areas stretching over 18% of the EU's land area and more than 8% of marine territory.
- The key requirements for EU countries defined by Natura 2000 are (I) mapping of habitat types within designated Natura 2000 areas and (II) monitoring of changes in habitats, i.e. changes in their distribution over a period of six years.

TYPICAL INCOMPLETE FRAMEWORK IN FOREST HABITATS CLASSIFICATION

STANDARD SUPERVISED LEARNING FRAMEWORK

Field sampling by relevés, a list of species observed in a quadrant together with estimates of their abundance/dominance or cover

Al Habitats Mapping System

Data pre-processing sub-system

Mission	Product Sensing		Sensing	Relative Orbit	Tile
ID	level	date	time	number	number
S2A	Level-2A	3.1.2020	9:54:01 AM	079	33TXL
S2A	Level-2A	2.4.2020	9:50:31 AM	079	33TXL
S2B	Level-2A	7.4.2020	9:50:29 AM	079	33TXL
S2B	Level-2A	17.4.2020	9:50:29 AM	079	33TXL
S2B	Level-2A	26.6.2020	9:50:29 AM	079	33TXL
S2A	Level-2A	21.7.2020	9:50:41 AM	079	33TXL
S2A	Level-2A	20.8.2020	9:50:41 AM	079	33TXL
S2A	Level-2A	9.9.2020	9:50:31 AM	079	33TXL
S2B	Level-2A	14.9.2020	9:50:29 AM	079	33TXL
S2A	Level-2A	19.10.2020	9:50:41 AM	079	33TXL

No	S-2 Band	Description	Central wavelength (µm)			
1	B01	Coastal aerosol	0.443			
2	B02	Blue	0.49			
3	B03	Green	0.56			
4	B04	Red	0.665			
5	B05	Red edge 1	0.705			
6	B06	Red edge 2	0.74			
7	B07	Red edge 3	0.783			
8	B08	Near infrared (NIR) 1	0.842			
9	B8A	Red edge 4	0.865			
10	B09	Water vapour	0.945			
11	B11	Short-wave infrared (SWIR) 1	1.61			
12	B12	SWIR 2	2.19			
	i		I			
No	S-2 Index	Description	Formula			
13	BI	The Brightnes Index	sqrt (Red ² / Green ²)/2			
14	BI2	The Second Brightnes Index	sqrt (Red ² + Green ^{2 +} NIR 1 ²)/3			
15	CI	The Colour Index	(Red - Green) / (Red + Green)			
16	RI	The Redness Index	(Red2 / Green2)			
17	NDVI	The Normalized Difference Vegetation Index	(NIR 1 - Red)/(NIR 1 + Red)			
18	ARVI	The Atmospherically Resistant Vegetation Indeks	(NIR - (Red - (Blue - Red)) / (NIR + (Red - (Blue - Red))			
19	GNDVI	The Green Normalized Difference Vegetation Index	(NIR 1 - Green) / (NIR 1 + Green)			
20	SAVI	The Soil Adjusted Vegetation Index	(1 + L) (NIR 1 - Red) / (NIR 1 + Red + L) L = (0.1)			
21	MCARI	The Modified Chlorophill Absorption Ratio Index	((Red edge - Red) - 0.2 * (Red edge - Green)) * (Red edge / Red)			
22	NDWI	The Normalized Difference Water Index	(NIR 1 - SWIR 1) / (NIR 1 + SWIR 1)			
23	MNDWI	The Modified Normalized Difference Water Index	(Green - SWIR 1) / (Green + SWIR 1)			
24	NDPI	The Normalized Difference Pond Index	(SWIR 1 - Green) / (SWIR 1 + Green)			
25	LAI	Leaf Area Indeks				
26	FAPAR	Fraction of Absorbed Photosynthetically Active Radiation				
27	FCOVER	Fraction of vegetation cover				
28	CAB	Chlorophyll content in the leaf				
29	CW	Canopy Water Content				

THE SUB-SYSTEM FOR INITIAL TRAINING DATA (GROUND TRUTH) GENERATION

CLOUD DATA STORAGE

Decision table for class labeling

	Frankulo-Ainetum glos:	Leucojo-Fraxinetum ane	Genisto elalae-Quercetur. caricetosum	Genísto elalae-Quercetur. caricetosum 4.2 Quercetur.	Genisto elalae-Querceture	Carpino betuli-Carpino betuli Carpino betuli-Carpino betuli-Quercetum roiso	Carpino betuli-Querceture fagetosum	Witrephilous Pasture	Schrubbery of Amorpha E	Plantations of domestin.	Plantations of foreign more	- toppar
Orthophoto – visually discrenible tree canopy morphology	x				,							Í
Orthophoto – visually discernible absence of trees								x				
Orthophoto – forest infrastructure												
The presence of flooding (Landsat-8 flood	x	x	x					x	x	x	x	
The presence of surface ice core (Sentinel-	x	x	x					x	x	x	x	
Excessive surface moisture (Sentinel-2	x	x						x	x	x	x	
Start of vegetation greening (Sentinel-2 BGR 2.4.2020)							x					
Start of vegetation greening (Sentinel-2					x	x						di
Start of vegetation greening (Sentinel-2			x	x								D
Start of vegetation greening (Sentinel-2 RGB, 30.5.2020)	x	x										
Canopy discoloration caused by oak lace bug (Sentinel-2 RGB, 14.9.2020)			x	x	x	x	x					
Dominant basal area percentage (forest inventory)	x	х	х	х	Х	х	х	х	х	Х	х	

Phenology model from literature

Timeline	January, February		April			September	October
Flooded area	Narrow leaved ash Pedunculate oak (flooded association)						
Leaves unfolding		Willow Beech	Common Hornbeam	Pedunculate oak	Narrow leaved ash Black Alder		
Crown discoloration by pest attack						Pedunculate oa	k (Oak lace bug)
Date of Sentinel 2 acquisition	3-Jan-2020	2-Apr-2020	17-Apr-2020	27-Apr-2020	30-May-2020	14-Sep-2020	4-Oct-2020

SYNTHETIC GROUND TRUTH CONSTRUCTION

SEGMENTATION OF THE TRAINING POLYGONS (K-MEANS CLUSTERING) - MULTITEMPORAL S-2 NDVI

Flood tolerance (Carpinus betulus)

Discoloration - S-2 image 15.9.2020 (Quercus robur - Oak lace bug (Corythucha arcuata))

Random forest

Overall Statistics: Accuracy : 0.863 95% CI : (0.8582, 0.8677) Kappa : 0.8393

RF Variable importance

Between class separability – Lasso model

	1	- 11		IV	V	VI	VII	VIII	X	XI	XIII	XIV
	1.00											
	0.97	1.00										
	1.00	0.95	1.00									
IV	0.99	0.92	1.00	1.00								
V	0.99	0.96	1.00	0.97	1.00							
VI	0.97	0.80	0.96	0.98	0.92	1.00						
VII	0.89	0.96	1.00	0.93	0.99	0.99	1.00					
VIII	1.00	1.00	1.00	0.96	1.00	1.00	0.98	1.00				
X	0.93	0.99	1.00	0.99	0.99	0.99	0.97	1.00	1.00			
XI	1.00	1.00	1.00	0.96	1.00	1.00	0.97	0.98	0.99	1.00		
XIII	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	0.98	1.00	
XIV	1.00	1.00	1.00	0.99	1.00	1.00	0.99	1.00	0.95	0.98	1.00	1.00

Scaling using GEOBIA or Deep Neural Networks

PRODUCTION OF THE FOREST HABITAT MAP FOR THE ROI OF WESTERN POSAVINA BY APLYING GEOGRAFIC OBJECT-BASED IMAGE ANALYSIS (RANDOM FOREST, SVM) ON THE CONSTRUCTED TRAINING POLYGONS (GROUND TRUTH)

OFFICIAL HABITAT MAP OF ŽUTICA FOREST

Key personnel	PROJECT MANAGER Lead concept developer, forest ecology scientist									
Croatian Forest Research Institute		Ivan Pilaš, Ph.D.								
Sub-contractors										
Faculty of Geodesy, University of Zagreb	Lead remote sens scientist	ing L vis	ead analysis and ualization scientist		Lead Machine learning scientist					
Croatian Forests Ltd.	Mateo Gašparović, I	Ph.D. Dar	nir Klobučar, Ph.D		Marko Sub	oašić, Ph.D.				
University of Zagreb, Faculty of Electrical Engineering and										
Institute for Environment and Nature (IEN)	Lead senior advis Natura Ramona Topić,	er-specialist for 2000 , dipl.ing.biol.	E	Lead spati Bojan Kara	al data man ica, mag.ing	ager .geol.				

Thank you!