

Urban greenery – an important component of citizens well-being

Functions and ecosystem services of urban greenery, human perception

Role and potential of RS in gathering data/information for urban planers

Global Change Research Institute Czech Academy of Sciences Brno, Czech Republic František Zemek, Miroslav Pikl

Development of instruments for planning and assessment of ecological benefit of greenery in towns

interdisciplinary approach to assessment of urban greenery EF/ES

- I. cooling effect latent heat (evapotranspiration)
- **II.** carbon sequestration (CO₂) annual biomass growth
- III. capture of particle matters $(PM_{10}, PM_{2.5}, O_3, NO_x, SO_2)$
- IV. noise reduction dB per units of greenery
- V. cultural and aesthetic effects hedonic function

Outputs

methodology: <u>https://www.czechglobe.cz/wp-</u> content/uploads/2022/04/Metodika TACR TH04030496 cert.pdf

software: <u>www.ekobenefity.cz.</u>

CzechGlobe

doc. Ing. Mgr. František Zemek, Ph.D. Ing. Miroslav Pikl, Ph.D. MSc. Mgr. Marian Pavelka, Ph.D. doc. Ing. Miloš Zapletal Dr. MSc. Helena Duchková Ing. Lukáš Kokrda Mgr. Davina Elena Vačkářová, Ph. D. MSc. Lenka Foltýnová, Ph. D. Ing. Jan Novotný, Ph.D. Ing. Kateřina Mácová, Ph.D. doc. RNDr. Pavel Cudlín, CSc.

SAFE TREES, s.r.o.

Ing. Jaroslav Kolařík, Ph.D. Ing. Hana Holešová Mgr. Olga Chalupová Ing. Barbora Vojáčková Mgr. Jiří Mikulášek

Regulation of temperature

Regulation of temperature

Dendrometer – change in perimeter of tree trunk

Denrdometr DRL-26S, EMS Brno

Regulation of temperature

Diurnal spiration of oak cca 100 year (June – August) dendrometer: 70 – 140 l subflow: 120- 200 l

Carbon sequestration

Eddy co variance tower

Noise reduction

Noise reduction

Thermal comfort in urban areas: human perception, physics based reality, role of greenery

combination

- physical based data (RS airborne and ground scanning/measurements)
- socio data questionnaire survey

Outputs

- Town maps of structure and surface temperatures
- Education materials (pupils, students, population) roles of greenery, special focus on trees
- Sci paper
- Workshops

http://tekob.czechglobe.cz

Multisource data fusion (TASI, LiDAR)

Sociological survey via Google Street View photographs

Google Street View points

CzechGlobe Sociological survey via Google Street View photographs

CASI RGB

Landcover classification from FLIS data

roofs high vegetation roads and solid surface low vegetation water

Sociological survey related to conditions around each point – buffer 30 m).

From airborne data: Surface temperature, Sky-view factor, Height of objects, Land cover (water, bare surface, high vegetation, low vegetation), Irradiation (direct, diffused)

J. Urban, M. Pikl, F. Zemek, J. Novotný

Using Google Street View photographs to assess long-term outdoor thermal perception and thermal comfort in the urban environment during heatwaves, Frontiers in Environmental Science, DOI 10.3389/fenvs.2022.878341

RS thermal data for urban planers, heating island

Remote Sensing of Land Surface Temperature

Satellite	Sensor	Temporal Coverage	Orbit & Swath	Spectral Bands (µm)	Spatial Resolution	Temporal Resolution
Landsat 4 Landsat 5 Landsat 7 Landsat 8 Landsat 9	Thematic Mapper (TM) Thematic Mapper (TM) Enhanced Thematic Mapper Plus (ETM+) Thermal Infrared Sensor (TIRS) Thermal Infrared Sensor-2 (TIRS-2)	07/1982 –12/1993 03/1984 – 01/2013 04/1999 – Present 02/2013 – Present 11/2021 – Present	Landsat 4–9 Orbit: Polar, 10 am/pm (local time) Swath: 185 km	10.40 - 12.50 10.40 - 12.50 10.60 - 11.19 11.50 - 12.51 11.50 - 12.51	120 m 60 m 100 m 100 m	16 days
Terra Aqua	Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) & MODIS MODerate-resolution Imaging Spectroradiometer (MODIS)	12/1999 – Present 04/2002 – Present	Terra/Aqua Orbit: Polar, 10:30 (Terra) am/pm & 13:30 (Aqua) am/pm (local time) Swath: 2330 km	10.78 – 11.28 11.77 – 12.27	1 km	12 hours

N. Malakar, G. Hulley, S. J. Hook, K. Laraby, M. Cook, J. Schott (2018) An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation, IEEE Transactions on Geoscience and Remote Sensing. DOI:<u>10.1109/TGRS.2018.2824828</u>

Ermida, S.L., Soares, P., Mantas, V., Göttsche, F.-M., Trigo, I.F., (2020) Google Earth Engine open-source code for Land Surface Temperature estimation from the Landsat series. Remote Sensing, 12 (9), 1471; https://doi.org/10.3390/rs12091471

Satellite Remote Sensing for Measuring Urban Heat Islands and Constructing Heat Vulnerability Indices Part 1: Land Surface Temperature-Based Urban Heat Island Mapping

Sean McCartney & Amita Mehta – August 2, 2022

Landsat 8 average surface temperature July –August 2017-2019

Temperature range 24-52 °C

C deg 75

14

Current surface temperature

CASI RGB

SASI VNIR

Daily direct radiation [kWh/m²]

Daily difused radiation [kWh/m²]

Current surface temperature

Thank you for your attention

zemek.f@czechglobe.cz