

Correlating radial growth of European beech to remotely sensed indices, precipitation and temperature across Europe

Dr. Dejan Stojanović, Assist. Prof.

dejan.stojanovic@uns.ac.rs

University of Novi Sad

SCERIN-6 Capacity Building Workshop on Earth System Observations

11th-14th June 2018 Zagreb, Croatia

"Land Cover Dynamics Precursors of Land Cover Change in SCERIN"

Institute of Lowland Forestry

Faculty of Agriculture

Novi Sad

SCERIN-6 Meeting, Zagreb, CR, Jun 2018

Serbia

Tree-growth data

32 plots of European beech across Europe

Annals of Forest Science
DOI 10.1007/s13595-017-0660-z

CrossMark

DATA PAPER

EuMIXFOR empirical forest mensuration and ring width data from pure and mixed stands of Scots pine (*Pinus sylvestris L.*) and European beech (*Fagus sylvatica L.*) through Europe

Michael Heym¹ · Ricardo Ruíz-Peinado^{2,3} · Miren Del Río^{2,3} · Kamil Bielak⁴ · David I. Forrester⁵ · Gerald Dirnberger⁶ · Ignacio Barbeito⁷ · Gediminas Brazaitis⁸ · Indrè Ruškytkė⁸ · Lluís Coll⁹ · Marek Fabrika¹⁰ · Lars Drössler¹¹ · Magnus Löf¹¹ · Hubert Sterba⁶ · Václav Hurt¹² · Viktor Kurylyak¹³ · Fabio Lombardi¹⁴ · Dejan Stojanović¹⁵ · Jan Den Ouden¹⁶ · Renzo Motta¹⁷ · Maciej Pach¹⁸ · Jerzy Skrzyszewski¹⁸ · Quentin Ponette¹⁹ · Géraud De Streel¹⁹ · Vit Sramek²⁰ · Tomáš Čihák²¹ · Tzvetan M. Zlatanov²² · Admir Avdagic²³ · Christian Ammer²⁴ · Kris Verheyen²⁵ · Buraczyk Włodzimierz⁴ · Andrés Bravo-Oviedo^{2,3} · Hans Pretzsch¹

Eur J Forest Res DOI 10.1007/s10342-015-0900-4

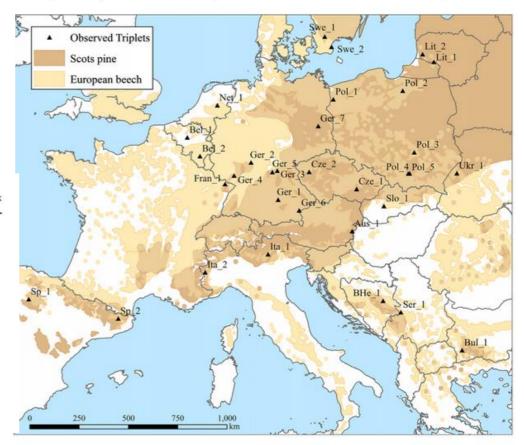
CrossMark

ORIGINAL PAPER

Growth and yield of mixed versus pure stands of Scots pine (*Pinus sylvestris* L.) and European beech (*Fagus sylvatica* L.) analysed along a productivity gradient through Europe

 $\begin{array}{l} H. \ Pretzsch^1 \cdot M. \ del \ R(o^2 \cdot Ch. \ Ammer^3 \cdot A. \ Avdagic^4 \cdot I. \ Barbeito^5 \cdot \\ K. \ Bielak^6 \cdot G. \ Brazaitis^7 \cdot L. \ Coll^8 \cdot G. \ Dirnberger^9 \cdot L. \ Drössler^{10} \cdot \\ M. \ Fabrika^{11} \cdot D. \ I. \ Forrester^{12} \cdot K. \ Godvod^7 \cdot M. \ Heym^1 \cdot V. \ Hurt^{13} \cdot \\ V. \ Kurylyak^{14} \cdot M. \ Löf^{10} \cdot F. \ Lombardi^{15} \cdot B. \ Matovic^{16} \cdot F. \ Mohren^{17} \cdot \\ R. \ Motta^{18} \cdot J. \ den \ Ouden^{17} \cdot M. \ Pach^{19} \cdot Q. \ Ponette^{20} \cdot G. \ Schütze^1 \cdot \\ J. \ Schweig^1 \cdot J. \ Skrzyszewski^{19} \cdot V. \ Sramek^{21} \cdot H. \ Sterba^9 \cdot D. \ Stojanovic^{16} \cdot \\ M. \ Svoboda^{22} \cdot M. \ Vanhellemont^{23} \cdot K. \ Verheyen^{23} \cdot K. \ Wellhausen^1 \cdot \\ T. \ Zlatanov^{24} \cdot A. \ Bravo-Oviedo^2 \end{array}$

Journal of Ecology

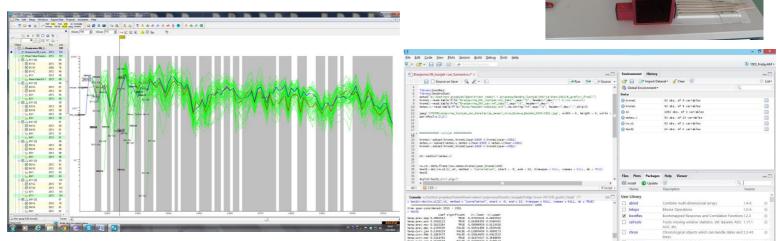

Journal of Ecology

doi: 10.1111/1365-2745.12727

FC01061

Species interactions increase the temporal stability of community productivity in *Pinus sylvestris–Fagus sylvatica* mixtures across Europe

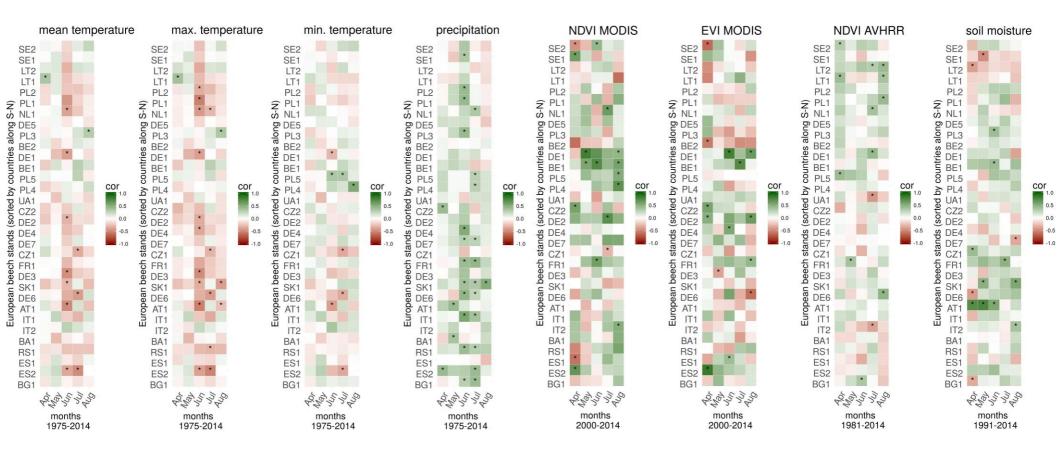
Miren del Río^{1,2}*, Hans Pretzsch³, Ricardo Ruíz-Peinado^{1,2}, Evy Ampoorter⁴, Peter Annighöfer⁵, Ignacio Barbeito⁶, Kamil Bielak⁷, Gediminas Brazaitis⁸, Lluís Coll⁹, Lars Drössler¹⁰, Marek Fabrika¹¹, David I. Forrester¹², Michael Heym³, Václav Hurt¹³, Viktor Kurylyak¹⁴, Magnus Löf¹⁰, Fabio Lombardi¹⁵, Ekaterina Madrickiene⁸, Bratislav Matović¹⁶, Frits Mohren¹⁷, Renzo Motta¹⁸, Jan den Ouden¹⁷, Maciej Pach¹⁹, Quentin Ponette²⁰, Gerhard Schütze³, Jerzy Skrzyszewski¹⁹, Vit Sramek²¹, Hubert Sterba²², Dejan Stojanović¹⁶, Miroslav Svoboda²³, Tzvetan M. Zlatanov²⁴ and Andrés Bravo-Oviedo^{1,2}




Methods

- Each of 32 localities has population of 15-20 sampled trees for dendrochronological analysis.
- Bootstrapping correlation
- R (*treeclim* and *bootRes* packages for correlation analysis, *ggplot2* for visualization)

Results


Correlation analysis: European beech vs variables

Months: April, May, June, July, August

Localities sorted $S{\rightarrow}N$

Positive correlation (green) / negative (red)

Stars: significant correlation

Conclusions

Growth of European beech (32 localities across Europe) was mostly **negatively** correlated with **maximal temperatures** (high temperature \rightarrow low growth) and **positively** correlated with **precipitation** (high precipitation \rightarrow high growth) during growing season months.

Remotely sensed indices (NDVI and EVI can be used as proxies of growth in some cases)

