

ioannis Manakos, Dr.

Centre for Research and Technology Hellas Information Technologies Institute Visual Analytics, Virtual & Augmented Reality Lab Researcher in Remote Sensing



 Environment, Geoscience and Remote Sensing







Core project activities are

- i) the exploitation of Earth Observation data from existing archives and new missions,
- ii) the utilization of latest advancements in data mining and image processing,
- iii) the adjustment of process-based models to assimilate the aforementioned data, maximizing performance,
- iv) the incorporation of cross-scale interactions in the processing concept, and
- v) the combination and alignment of the ecosystem functions with the beneficiaries needs.







## ECOPOTENTIAL will

- assess climate change impacts combined with land cover and land use change scenarios,
- will consider ecosystem services including supply and demand, and
- will provide platforms for cyber infrastructures and data interoperability,
- while taking into consideration policy developments,
- benefitting from citizen science activities, and
- implementing capacity building and outreach activities.







To address this challenge, the EU H2020 ECOPOTENTIAL project includes a strong trans-disciplinary team of experts and stakeholders from 47 directly-involved renowned Institutions across Europe and beyond.





















EU H2020 funding GA No 641762









EU H2020 funding GA No 641762













## Protected Areas in the SCERIN area









#### **Northern Limenstone Alps**

The Northern Limestone Alps National Park storyline in Austria is **focusing on** estimating the carbon sink strength of this mountain forest landscape, which is prone to climate driven disturbances such as bark beetle attacks and wind throw.







### Lake Ohrid /Lake Prespa (FYROM – GREECE)

RS coupled with in-situ data will provide information on spatial and temporal changes of environmental parameters across surface waters of the watershed and information at catchment scale on land cover, land use, vegetation status and forest fires **to facilitate the establishment of linkages between catchment scale alterations and lake ecosystem processes.** 

Curonian Lagoon (similar to Camarque focusing on fisheries and recreation)

Research activities in Curonian Lagoon mainly focused on analysing services associated with the main socio-economic activities of the delta (fishing, reed harvesting), including supporting service such as biodiversity (endemic species, species richness). Recent developments also have focused on studying the biogeochemical services of the Curonian lagoon including denitrification.





ECOPOTENTIAL Protected Areas in the SCERIN area



#### **Danube Delta**

The storyline in Danube Delta explores the link between aquatic ecosystem provisioning services and touristic attraction of the area.

#### **High Tatra Mountains**

**Storyline to support:** The increase of flooding and landslides following a large scale deforestation due to windstorm in 2014, has made practitioners to decide the change of land use from former spruce monocultures to more natural mixed forest to assist soil retention, regulate the water cycle and preserve biodiversity.







TOWARDS A PAN-EUROPEAN PERSPECTIVE -CHALLENGES IN MONITORING CROSS-SCALE

PROCESSES

#### by

#### **Richard Lucas and Anthea Mitchell**

Centre for Ecosystem Sciences, School of Biological, Earth and Environmental Sciences, the University of New South Wales, High Street, Kensington, NSW 2052, Australia.

Palma Blonda, Valeria Tomaselli, Cristina Tarantino, Patzria Adamo, Carmela Marangi National Research Centre (CNR), Italy

Ioannis Manakos, Vicky Kosmidou and Zisis Petrou Centre for Research and Technology Hellas (CERTH), Greece

and ECOPOTENTIAL colleagues









🔊 🛸 SCERIN-5 Capacity Building Workshop – ECOPOTENTIAL approach in the SCERIN |20–23.06.17, Pecs | 14 | 🗣 imanakos@iti.gr |



THE FOOD AND AGRICULTURAL ORGANISATION (FAO) LAND COVER CLASSIFICATION SYSTEM LCCS-2



GA No 641762



🖈 SCERIN-5 Capacity Building Workshop – ECOPOTENTIAL approach in the SCERIN |20–23.06.17, Pecs | 15 | 🗣 imanakos@iti.gr



# LCCS-2: COMPREHENSIVE DESCRIPTIONS (E.G., OF FORESTS)









# THE EODESM GRID: DEVELOPMENT AND TESTING









# Translation from existing Land cover and/or habitat maps









# Classes Derived from Thematic Layers





Lifeform



Lichen extent

2 CTV Herbaceous 3 CTV Graminoids 5 NTV Trees 6 NTV Shrubs 7 NTV Graminoids 8 NTV Herbaceous 9 NAV Trees



Leaf type (broadleaved, needleleaved)





Tree Cover Density (%)











|       | Very Stony Linconsolidated materials                               | Single crop everareen Strub crops                                      |
|-------|--------------------------------------------------------------------|------------------------------------------------------------------------|
|       | PhenEvergreen Open (40-65%) Trees                                  | Multiple crop evergreen Tree crops                                     |
|       | Single crop Harbaceous crops                                       | Open Trees on Flooded land                                             |
|       | Broadleaved PhenEvergreen Open (40-65%) Trees                      | Single crop deciduous Tree crops                                       |
|       | Broadleaved PhenEvergreen Closed Trees                             | Deciduous Closed Trees                                                 |
|       | Needlelosved PhenEverateen Closed Trees                            | Closed Dwarf Shrubland (thicket)                                       |
|       | Deciduous Open (40-65%) Trees                                      | Single crop deciduous Shrub crops                                      |
|       | Deciduous Open (40-65%) Dwarf Shrubland (thicket)                  | Artificial Perennial waterbodies (Standing)                            |
|       | Open (40-65%)                                                      | Open (40-65%) Dwart Shrubland (thicket) on Flooded land                |
|       | PhenEvergreen Open (40-65%) Dwarf Shrubland (thicket)              | Artificial waterbodies (Flowing)                                       |
|       | Multiple crop Herbaceous crops                                     | Trees on Flooded land                                                  |
|       | Needleleaved Deciduous Closed Trees                                | Open Dwarf Shrubland (thicket) on Flooded land                         |
|       | Built Up area                                                      | Artificial Perennial waterbodies (Flowing)                             |
|       | Open (40-65%) Herbaceous vegetation                                | Dwart Shrubland (thicket) on Flooded land                              |
|       | Broadleaved Deciduous Closed Trees                                 | Needleleaved Open (40-65%) Dwart Shrubland (thicket)                   |
|       | Broadleaved Deciduous Open (40-65%) Trees                          | Open Mosses on Flooded land                                            |
|       | Closed                                                             | Closed Dwarf Shrubland (thicket) on Flooded land                       |
|       | Needleleaved PhenEvergreen Open (40-65%) Trees                     | Closed Lichens Mosses on Flooded land                                  |
|       | PhenEvergreen Closed Dwarf Shrubland (thicket)                     | Artificial waterbodies                                                 |
|       | Herbaceous crops                                                   | Open Herbaceous vegetation on Flooded land                             |
|       | Broadleaved Deciduous Open (40-65%) Dwarf Shrubland (thicket)      | Needleleaved Closed Dwarf Shrubland (thicket)                          |
|       | Broadleaved PhenEvergreen Open (40-65%) Dwarf Shrubland (thicket)  | Broadleaved Open (40-65%) Dwart Shrubland (thicket)                    |
| 1.000 | Deciduous Closed Dwarf Strubland (thicket)                         | Herbaceous vegetation on Flooded land                                  |
|       | Open (40-65%) Dwarf Shrubland (thicket)                            | on Flooded land                                                        |
|       | Open (40-65%) Lichens-Mosses                                       | evergreen Shrub crops                                                  |
|       | Needleleaved Deciduous Open (40-65%) Trees                         | Multiple crop evergreen Shrub crops                                    |
|       | Broadleaved PhenEvergreen Closed Dwarf Shrubiand (thicket)         | Open (40-65%) Trees on Flooded land                                    |
| 1000  | Closed Herbaceous vegetation                                       | Multiple crop Permanently cropped area with Rainfed Herbaceous crops   |
|       | Needeleaved PhenEvergreen Closed Dwarf Shrubland (Inicket)         | Single crop Permanently cropped area with Rainfed Herbaceous crops     |
|       | Broadleaved Deciduous Closed Dwart Shrubland (thicket)             | Permanently cropped area with Rainfed Herbaceous crops                 |
|       | Broadieaved Open (40-65%) Trees                                    | deciduous Shrub crops                                                  |
|       | Needleleaved Closed Trees                                          | deciduous Tree crops                                                   |
|       | Needleleaved PhenEvergreen Open (40-65%) Owart Shrubland (thicket) | Multiple crop deciduous Tree crops                                     |
|       | Broadleaved Closed Trees                                           | Single crop Permanently cropped area with Rainfed evergreen Tree crops |
|       | Needleleaved Deciduous Open (40-65%) Dwarf Shrubland (thicket)     | Open (40-65%) on Flooded land                                          |
|       | Needleleaved Open (40-85%) Trees                                   | Multiple crop deciduous Shrub crops                                    |
|       | Needleleaved Deciduous Closed Dwarf Shrubland (thicket)            | Single crop Permanently cropped area with Rainfed deciduous Tree crops |
|       | Open (40-65%) Trees                                                | Multiple crop Tree crops                                               |
|       | Closed Trees on Flooded land                                       |                                                                        |
|       | Single crop evergreen Tree crops                                   |                                                                        |
| 1     | Artificial waterbodies (Standing)                                  |                                                                        |
|       | Closed Forbs                                                       |                                                                        |
| _     | Open (40-65%) Forbs                                                |                                                                        |
|       | Closed Lichens/Mosses                                              |                                                                        |
| 1     | PhenEvergreen Closed Trees                                         |                                                                        |
|       | Brodiagied Closed Dwart Shribland (thicke)                         |                                                                        |

evergreen Tree crops







# CHANGE DETECTION RATES AS FUNCTION OF LAND COVER TYPES AND USES









## DAVOS, Switzerland FAO LCCS Change (Woody Vegetation) 2003 – 2012

Remained as Shrubs (< 0.5 m)(B10) Remained as Shrubs (5-0.5 m)(B14) Remained as Trees (7-3 m)(B7) Remained as Trees (14-7 m)(B6) Remained as Trees (>14 m)(B5) Bare to Shrubs (< 0.5 m)(B10) Bare to Shrubs (5-0.5 m)(B14) Bare to Trees (7-3 m)(B7) Bare to Trees (14-7 m)(B6) Bare to Trees (>14 m)(B5) Shrubs (< 0.5 m)(B10) to Bare Shrubs (5-0.5 m)(B14) to Bare Shrubs (< 0.5 m)(B10) to Shrubs (5-0.5 m)(B14) Shrubs (5-0.5 m)(B14) to Shrubs (< 0.5 m)(B10) Shrubs (< 0.5 m)(B10) to Trees (7-3 m)(B7) Shrubs (5-0.5 m)(B14) to Trees (7-3 m)(B7) Shrubs (5-0.5 m)(B14) to Trees (14-7 m)(B6) Trees (7-3 m)(B7) to Bare Trees (14-7 m)(B6) to Bare Trees (>14 m)(B5) to Bare Trees (7-3 m)(B7) to Shrubs (5-0.5 m)(B14) Trees (14-7 m)(B6) to Shrubs (5-0.5 m)(B14) Trees (>14 m)(B5) to Shrubs (5-0.5 m)(B14) Trees (7-3 m)(B7) to Trees (14-7 m)(B6) Trees (7-3 m)(B7) to Trees (>14 m)(B5) Trees (14-7 m)(B6) to Trees (7-3 m)(B7) Trees (14-7 m)(B6) to Trees (>14 m)(B5) Trees (>14 m)(B5) to Trees (7-3 m)(B7) Trees (>14 m)(B5) to Trees (14-7 m)(B6)

nanakos@iti.gr |

EU H2020 funding GA No 641762



## EVIDENCE-BASED CHANGE DAVOS, Switzerland FAO LCCS Change Events (Woody Vegetation) 2003 – 2012

#### Deforestation

Height change: Tall (trees) to short (shrubs, graminoids) or bare

Change in Biomass: decrease between 2003-2012

#### Regrowth

Height change: Short (shrubs and trees) to tall (trees)

Change in Biomass: increase between 2003-2012

# Deforestation Regrowth

nanakos@iti.gr | <sup>E</sup>



# **EVIDENCE FOR CHANGE: CLASSES AND VARIABLES**

#### A3.A14.B2.C1.D1.E1.F1



Trees closed canopy (>70-60 %) tall (14-30 m) continuous broadleaved evergreen.second layer absent



A3.A14.B2.C1.\_\_.F1 Trees sparse canopy (20-10-1%). EVIDENCE: tall (14-30 m). continuous Dieback broadleaved.evergreen.second NOT layer absent + other EV change\* Deforestation











The EODESM system allows:

- Consistent classification of land covers for any site globally using the FAO LCCS-2 taxonomy.
- Inclusion of biophysical layers (thematic and continuous), including time-series (e.g., hydroperiod, snow cover, phenology) within the classification but also external to the classification.
- Inclusion of image-wide or land cover specific classifications (e.g., of floating or rooted aquatic vegetation or water turbidity)
- Detection of change in LCCS codes and also biophysical attributes.
- Evidence-based approach to change detection.
- Attribution of change to a potential cause and consequence (in development).
- Capacity to translate LCCS to Habitat and other taxonomies.













The EODESM system has the following advantages:

- Selection of any data layers, no matter how derived and including knowledge, into the classification.
- Inclusion of local, european and/or global layers
- Applicable at any scale
- Can be replicated with in situ data
- Mobile App (based on Open Data Kit)
- Able to ingest all forms of earth observation and other geographical (spatial) data.
- Simple to use, understand and implement
- Is informative, utilizes ecological knowledge, and allows for targeted applications.
- Open source software (Python, RSGISLib, KEA, EODESM, ARCSI)
- Well suited for protected area classification (and of surrounding areas)











## Near Real Time Ground Data Collection



GA No 641762





## Near Real Time Ground Data Recording (30'')





#### Stores individual LCCS codes

#### A3.A10.B2.C1.D1.E1.F1.F9.G7

Trees closed canopy (>70-60 %) tall (14-30 m) continuous broadleaved evergreen with 2<sup>nd</sup> layer supporting open canopy 7-3 m in height.

#### Capacity to record additional attributes

Water turbidity





# Centralized and Near Real Time Storage



| Web<br>Way 10<br>10:02:48<br>UTC<br>2017     | Vicentico                    | Valeria         | 41 10355635         | 16 0716693         | 3~7 0              | 6.0 |        | svog terrestrial outvoloofformelist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42 |
|----------------------------------------------|------------------------------|-----------------|---------------------|--------------------|--------------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Wed<br>Way 10<br>10.06 5s<br>01.0<br>10.17   | Minanaire                    | Velate          | 41.10552181         | 16/07:59/44        | sean               | an  | minute | sYap annother cutycladfamother                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | έ  |
| Wed<br>May 10<br>(0.21 DA<br>1070<br>2017    | Alta Menda<br>Minerston      | Valerta         | 41 07751901         | 15.57003402        | (0: A              | 50  | ¥      | evag temetral outvaledTemetral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1 |
| Wed<br>May 10<br>10:27:07<br>UTC<br>2017     | Mirenino                     | Glassoppe       | 41.07225095         | 16.077: 8999       | 428.0              | 60  | 大学の地   | sing terresolut convected encorrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A  |
| Wed<br>Wey 10<br>10:40:19<br>0010<br>2017    | Munegia<br>Alta<br>Minarytop | Valenta         | 41.08M283K2         | 163757530          | 412.0              | 50  |        | arrage cannot national addresses and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AS |
|                                              |                              |                 |                     |                    |                    |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 10.55 10<br>0.55 10<br>0.0<br>2017<br>Web Ap | Jonana                       | Alex            | 34 MINUS (2008) 200 | -24109/2729310115  | 59.020077145408985 | 24  |        | Veg lervetralseralsesand"erneste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 05<br>13.0<br>.010<br>2017                   | הזיייר                       | Niver           | 10.991200039120900  | 7.412(20042311158  | 43.902312718-0245  | 14  |        | antalis, example and a second s |    |
| 18<br>09 88 2<br>.FT<br>2017                 | Foxe:                        | Fran<br>Raminer | \$7.150809E72       | 0.450007723        | 54.191688427754876 | 4.0 | No.    | Way and something and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| N-1 Ap<br>05<br>01 52 00<br>01 70<br>2017    | John                         | Fran<br>Marines | 38 39/9/2225        | -6.518954051       | 90.36657474386224  | 43  | -      | Vag to real-solver discussific arrange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Wes Ap<br>06<br>2 - 6 4<br>3 - 0<br>2017     | Derena                       | Alex            | 37 0037 2257069644  | -2.508008752445252 | 7   57452427776453 | 14  | - 10   | Vez le restrial seminatural Terreste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Ast Ap                                       |                              |                 |                     |                    |                    |     | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |

Data stored immediately or following access to phone network

Classifications relevant for any region and at multiple scales - MODIS 1 km or Drone 10 cm data Globally Applicable Taxonomy





### Supports Automated Detection of Change with Alerts (Based on Weighted Evidence of LCCS and biophysical change)



| Natural Vegetation | Agriculture                  | Urban                  | Water                 | Bare ground               | CHANGES             |
|--------------------|------------------------------|------------------------|-----------------------|---------------------------|---------------------|
| Deforestation      | Herbicide Spraying           | Road Abandonment       | Flooding              | Lava Flows                |                     |
| Degradation        | Burning                      | Greening               | Inundation            | Sedimentation             |                     |
| SelectLogging      | Cutting                      | Browning               | DryingEvent           | Erosion                   | BASED ON            |
| Defoliation        | Grazing                      | Planning               | Long Term Drying      | Dune Change               | EVIDENCE            |
| Thinning           | Growth                       | Urban Densification    | Net Snow Accumulation |                           |                     |
| Dieback            | Stubble Formation            | Urban Renewal          | Net Snow Loss         |                           |                     |
| Growth             | Agri. Expansion              | Waste Dumps/Extraction | SnowFall              | a constant of the         |                     |
| Thickening         | Agri. WaterSupp              | Comm. Installation     | SnowMelt              | La Lord                   |                     |
| Encroachment       | Agri. TimeFactor             | Comm. Abandonment      | Waterlogging          |                           |                     |
| Abandonment        | Tillage                      | Rail Conversion        | Water OutBurst        | as the second             | The The             |
| Hedgerow removal   | Pasture Degradation          | Rail Construction      | Dam Creation          | and and a                 |                     |
|                    | Pasture Replanting           | Urban Expansion        | Land Drainage         | and a sub of the          | Carlos Starter      |
|                    | Crop Change                  | Road Conversion        | Freezing              |                           | A A A A             |
|                    | Crop Growth                  | Road Construction      | Thawing               | Constant of the second    | 7 2 7 7             |
|                    | Crop Sequence change         | Road Improvement       | Glacial Flow          |                           |                     |
|                    | Agri. Homogenisation         | Industrialisation      | Sea Level Rise        |                           | 1                   |
|                    | Agri. Division               | Infilling/levelling    | Water Pollution       |                           | No. Carlos          |
|                    | Plantations                  |                        | Tida ILoss            | Contraction of the second |                     |
|                    | Plantation Growth            |                        |                       | . Frank Frank             |                     |
|                    | Grass Fertilization          |                        |                       | Share A strange           | 13                  |
|                    | Orchard planting             |                        |                       |                           |                     |
|                    | Slurry or sediment spreading |                        |                       |                           | Defo                |
|                    | Liming                       |                        |                       |                           | Height change: Tall |

#### Deforestation

Height change: Tall (trees) to short (shrubs, graminoids) or bare; Decrease in biomass between 2003-2012

#### Regrowth

Height change: Short (shrubs and trees) to tall (trees); Increase in biomass between 2003-2012

#### Regrowth i.gr | EU H2020 funding GA No 641762

Deforestation





ECOPOTENTIAL: the biggest science platform on the topic for collaboration in Europe today





47 prestigious partners across Europe and beyond, across disciplines, work together for the next 2 years on 'Improving Future Ecosystem Benefits through Earth Observation'

> Meet us / Join us @ http://ecopotential-project.eu/





SCERIN & GEO ECO ? GEO ECO is a GEOBON initiative



Based on these existing perspectives and results, the <u>GEO ECO Initiative</u> (GEO Global Ecosystem Initiative) intends

- to build upon available results and extend them to a global scale,
- identifying Protected Areas of international relevance where the same methodology used in ECOPOTENTIAL can be applied.
- to support the efforts of extending and improving the Ecological Land Units, Ecological Marine Units, and Ecological Freshwater Units maps currently in development, and fostering other research initiatives of the same kind.
- Contributors may benefit of
- an already established scientific approach that will be shared among many protected areas around Europe, possibly becoming a benchmark if not a standard,
- an opportunity to gain visibility at (at least) European level
- an opportunity for networking

Contributors have to dedicate time and researchers' effort, because ECOPOTENTIAL partners don't have additional resources to work on other protected areas.





# SCERIN meets ECOPOTENTIAL





With my thanks and appreciation to Garik, Petya, Jana and GOFC-GOLD and START for providing us this opportunity

At your disposal for questions/ clarifications

ioannis Manakos, CERTH-ITI imanakos@iti.gr

ECOPOTENTIAL is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 641762.

