

Envirosense Hungary Ltd.

Eszterházy Károly University Research Institute of Remote Sensing and Rural Development

Airborne Remote Sensing Technologies

Dezső Mikus - Envirosense Hungary Ltd. **László Bekő** - Eszterházy Károly University

www.envirosense.hu

Overview

- Introduction
- Technical background
 - Airborne sensors
 - Field measurments
 - Data processing
- Case studies

Introduction Envirosense Hungary Ltd

Envirosense Hungary Ltd. \rightarrow spin off established in 2009.

- specialist of remote sensing, production and processing of images by aerial sensors
- Remote sensing **devices**:
 - aerial hyperspectral
 - airborne LiDAR technologies
 - digital imagery +processing of UAV and satellite images.

Fields of activities:

- Environmental protection / Nature conservation
- Forestry
- Agriculture
- Urban development
- Mining
- etc.

•

Introduction

Eszterházy Károly University

Research Institute of Remote Sensing and Rural Development

- The mission of the **EKU RIRSRD** is to conduct basic and applied remote sensing research for the advancement of scientific knowledge about the environment.
- Our team is responsible for conducting all phases of remote sensing operations, including *flight/mission planning, sensor maintenance, data acquisition, data processing, data analysis and modelling*
- 10+ years experience:
 - R+D projects
 - Hyperspectral imagery
 - LIDAR and orthophoto
 - Image processing

Research Institute of Remote Sensing and Rural Development

Introduction

Eszterházy Károly University

Research Institute of Remote Sensing and Rural Development

INSTITUTIONAL SUPPORT OF THE DISASTER AND EMERGENCY RESPONSE PROGRAM OF THE UNITED NATIONS – UN SPIDER

United Nations Office for Outer Space affairs (UNOOSA) I.

UNOOSA is the United Nations office responsible for promoting international cooperation in the peaceful uses of outer space.

UNOOSA conducts international workshops, training courses and pilot projects on topics that **include remote sensing, satellite navigation, satellite meteorology, tele-education and basic space sciences** for the benefit of developing nations. It also maintains a <u>24-hour hotline as the United Nations focal point for satellite imagery requests during disasters</u> and manages the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER).

UNITED NATIONS | UNOOSA | UN-SPIDER

United Nations Platform for Space-based Information for Disaster Management and Emergency Response

Each pixel is associated with simultaneous high resolution spectral information produced by a spectral camera What is spectral imaging? (hyperspectral imaging, imaging spectroscopy)

An *Aisa FENIX 1K* the top-of-the-range full spectrum (380 – 2500 nm spectral range) sensor with 1024 spatial pixels used for airborne collection operations.

This sensor is capable to record more than 600 bands up to 0.5 m ground resolution

Hyperspectral image in different displays (Sajó valley, Hungary)

MNF (mikreianki)site(ismlible/indiala)///(ageb)///re)d bands

Data processing AISA data processing chain

Drenthe province of the Netherlands AOI area: 2698,15 km²

	A01	A02	A03	B04	B05	B06	C07	C08
Area (km ²)	402.22	412.29	419.30	382.22	412.95	216.39	209.28	260.26
Planned flight lines	26	26	30	30	25	28	28	22

Flight line (to cover the AOI): 217

Flight days: 4-12 May 2016.

Raw data size:**4.17 TB**

WR tarp

Grass

Concrete

Berke J., Bíró T., Burai P., Kováts L.D., Kozma-Bognár V., Nagy T., Tomor T., Németh T. (2013): Application of remote sensing in the red mud environmental disiaster in Hungary, *Carpathian Journal of Earth and Environmental Sciences*, Vol. 3, 2, pp. 49-54., <u>http://www.ubm.ro/sites/CJEES/viewTopic.php?topicId=318</u>

Airborne remote sensing Airborne laser scanning (LiDAR)

Multiple returnes

Point cloud classification

Airborne remote sensing Airborne laser scanning (LiDAR) and digital orthophoto

Leica ALS-70 HP sensor with high accuracy GPS/INS and Leica RCD 30 RGBN 60 MP digital medium format camera

Maximum Flying Height (m AGL)	3500						
Maximum Measurement Rate (kHz)	500						
Field of view (degrees)	0–75 (full angle, user adjustable)						
Roll stabilization (automatic adaptive, degrees)	75–active FOV						
Scap pattorps (usor soloctable)	single	200					
Maximum Scan Pate (Hz)	triangle	158					
	raster	120					
Numbers of returns	unlimited						
Number of intensity measurements	3 (first, second, third)						
Accuracy	see graph						
Storage media	removable 500 GB SSD						
Storage capacity (hours @ max measurement rate)	6						

Piper PA-23-250 "Aztec" aircraft

60 megapixels resolution (8956 x 6708 pixel) Geometric resolution (max) : 4 cm Spectral range: RGB és NIR (780 – 900 nm) 50 mm focal lenght objective

Data processing

Processing of LIDAR data and aerial digital images

Airborne remote sensing Advantage of LIDAR and aerial digital imagery

- Producing **DSM** and **DTM**, especially in **forested areas**
- High accuracy and very dense measurement applications, e.g., DTM generation and volume calculation in open pit mines, waste deposits, forest parameters
- DTM and DSM generation in urban areas, generation of 3D city models
- Mapping of corridors, e.g., roads, railway tracks, pipelines, waterway landscapes
- Mapping of electrical power lines and towers including tree clearance
- Mapping large area (500-1000 km²/day)

Ground based measurements

Airborne laser scanning (LIDAR) and aerial digital imagery :

- Ground survey with DGPS and base station for calibrating
- Reference points surveys with high accuracy DGPS
- Collecting GNSS data with base station (during airborne acquisition and post-process)

Airborne hyperspectral imagery :

- Reference surveys with field
 spectrometer
- Study and controll sites surveys with DGPS
- Collecting ground samples (ASD FieldSpec3, etc)
- In situ measurments (WALZ Mini-Pam, etc.)

Data processing Techniques and devices

- **SGI supercomputer** SGI UV 2000 (24 db 2,4GHz Intel Xeon E5-4610 type CPU-144 core, total:1536 GB RAM)
- **SGI Octane III** high-performance graphics workstations
- SGI C2108-TY11 server
- SGI C1104-2TY9 dual-node server
- RAID storage

Case studies

- 1. Mapping of grassland (natural conversation)
- 2. Integration of hyperspectral and Lidar dataset to analyse tree species (forestry, railway)
- 3. Mapping of invasive tree species

Vegetation mapping using hyperspectral imagery

Study site: Pentezug-puszta (Hortobágy National Park), size: 23.5 km² Partners: National Park of Hortobágy, University of Debrecen

Hyperspectral imagery can be a suitable method for a **detailed vegetation classification** based on the **dominant** or **subdominant genera** or **species**

Hyperspectral acquisition and data sampling

Sensor: AISA Eagle + Spectral resolution: 400-1000nm Spectral resolution: 5nm Number of bands: 128 Ground resolution: 1m Acquisition: 07/07/2013

The sensor was mounted to a Piper Aztec aircraft.

Hyperspectral acquisition and data sampling

For the calculations we classified the species as dominant (>50%) and subdominant species (10%–50%) based on their relative cover.

Abbroviation	Dominant Species	Subdominant Spacios	Canopy Height Total Coverage of		Measured		
Abbreviation	Dominant Species	Subdominant Species	(cm)	Vegetation (%)	Area (m ²)		
CYN	Cynodon dactylon	Achillea collina	21.2	96.2	211		
FAC	Festuca pseudovina	Achillea collina	3.0	80.0	141		
FAR	Festuca pseudovina	Artemisia santonica	28.3	80.8	96		
САМ	Camphorosma annua	-	4.4	28.0	118		
РНО	Pholiurus pannonicus	-	18.6	47.0	142		
ART	Artemisia santonica	Pholiurus pannonicus	13.7	43.7	64		
ELY	Elymus repens	-	96.0	64.0	402		
ALO	Alopecurus pratensis	Agrostis stolonifera	48.3	93.3	531		
BEC	Beckmannia eruciformis	Agrostis stolonifera, Cirsium brachycephalum	87.5	91.2	552		training
ACI	Alopecurus pratensis	Cirsium arvense Elymus repens -	140.0	85.0	82		and
CAR	Carex spp.		- 100.0 90.0 253				validation
GLY	Glyceria maxima	-	40.0	90.0	229	random	dataset
ТҮР	Typha angustifolia	Salvinia natans	200.0	70.0	63	compling	
SAL	Salvinia natans	Typha angustifolia, Utricularia vulgaris	133.0	70.0	65	method	
BOL	Bolboschoenus maritimus	-	76.2	78.8	179		
SCH	Schoenoplectus lacustris ssp. tabernaemontani	-	166.0	87.0	121		
PHR	Phragmites communis	-	250.0	100.0	297		
FMM *	Alopecurus pratensis	-	10.0	80.0	351		
ARA *	Gypsophyla muralis, Polygonum aviculare	-	8.0	80.0	123		
MUD **	not relevant	_	10.0	8.0	158		

Vegetation mapping using hyperspectral imagery

Open vegetation was characterized by grasslands and wetlands with three classifiers and we could **separate 20 vegetation classes** with a **OA of 82.06%** (using SVM with MNF-transformed bands).

BURAI, P.–DEÁK, B.–VALKÓ, O.–TOMOR, T. (2015): Classification of herbaceous vegetation using airborne hyperspectral imagery. **Remote Sensing**, Vol. 7 (2), pp. 2046-2066.

AOI: Nord and Aisne province of Northern France. The target area was the 500 m buffer zone of 100 km length rail track. Partners: SNFC

24 tree species were collected on the field measurements – **12 classes** were labeled for image classification

Mapping invasive trees using hyperspectral and LiDAR data

Sensor and flight parameters

- Flight altitude: 1415 m (AGL) / 4642 ft (AGL)
- Swath width: 1024 m
- Flight speed (GS): 100 kts (185.2 km/h)
- Spectral res.: 3.5 nm (VNIR) / 6.3 nm (SWIR)
- Spectral range: 380-2450 nm
- Number of spectral bands: 420
- Spatial resolution: 1 m
- Overlapping: 20%
- Flight day: 29th June 2016 (08:07 08:49 UTC)
- Flight line (to cover the AOI): 21
- Raw data size: 195 GB

Visible colour (RGB) mosaic of hyperspectral lines

Mapping invasive trees using hyperspectral and LiDAR data

Workflow of image processing

15 tree species were collected on the field measurements – 18 classes were labeled for image classification

Classified hyperspectral image

15 tree species were collected on the field measurements – **18 classes** were labeled for image classification

Classes	Species	Latin name	Training (nixel)	Controll (nixel)	Overall (pixel)	
1	Pedunculate oak		23/	(pixci) 112	3/6	
2		Quercus robui	1042	676	340	
2		Quercus petraea	1942	070	2010	
3	Downy oak	Quercus pubescens	296	124	420	
4	Common beech	Fagus sylvatica	153	67	220	
5	Common hornbeam	Carpinus betulus	460	243	703	
6	Black locust	Robinia pseudoacaci a	1589	828	2417	
		Acer				
7	Sycamore	pseudoplatanus	91	27	118	
8	Field maple	Acer campestre	120	49	169	
9	Common ash	Fraxinus excelsior	82	26	108	
10	Manna ash	Fraxinus ornus	166	74	240	
11	Silver lime	Tilia tomentosa	176	73	249	
12	Cherries	Cerasus	369	175	544	
13	Spruce	Picea	77	17	94	
14	Black pine	Pinus nigra	234	128	362	
15	Ailanthus	Ailanthus	932	387	1319	
16	Ailanthus (spreading seeds)		237	94	331	
17	Black locust, Ailanth us mixed population		271	115	386	
18	Ailanthus (re- growth after clear- cut)		83	49	132	

Mapping invasive trees using hyperspectral and LiDAR data

Result of image classification (MNF bands + SVM)

	Ground Tru (Percent)	ith																	
Class	BL	CS	ктт о	GY /	4 E	3	A+BL	HJ	EH	KST I	BL-msz l	_F	BL-csem N	ЛК	мот	√к і	MJ F	F	Total
BL	76,63	. 0,81	0,31	0,00	1,20	1,31	2,95	0,00	0,57	0,00	1,27	0,00	0,00	0,00	1,35	0,00	0,00	0,43	10,13
CS	6,97	86,18	4,69	0,87	0,63	1,31	0,00	0,00	0,00	0,00	1,27	0,00	0,00	1,22	1,35	0,00	0,83	0,00	6,64
ктт	0,86	5 2,98	69,26	4,13	0,06	0,65	0,00	0,00	0,00	0,00	4,22	0,00	0,00	2,44	5,07	3,01	0,00	0,00	18,86
GY	0,54	2,44	3,96	67,39	0,00	6,54	0,00	0,00	0,00	0,00	1,69	0,00	0,00	0,00	3,04	1,81	0,00	0,00	5,68
А	4,63	1,08	0,21	1,09	89,93	0,00	2,58	0,00	0,00	0,00	0,84	0,00	0,00	0,00	0,34	0,00	0,00	0,00	19,89
В	0,22	1,90	1,39	4,78	0,06	88,89	0,00	0,00	1,14	0,00	0,00	0,00	0,00	0,00	2,03	0,60	0,00	0,00	2,71
A+BL	3,00	0,00	0,31	0,43	5,85	0,00	93,73	0,00	0,00	0,00	0,42	0,00	0,00	0,00	0,00	1,20	0,00	0,00	5,14
HJ	0,00	1,08	0,05	0,22	0,13	0,00	0,00	98,94	0,00	2,14	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,41
EH	0,22	0,54	0,82	0,43	1,45	0,00	0,00	0,00	96,02	0,00	0,00	0,00	0,00	0,00	0,00	1,20	0,00	0,00	2,87
KST	0,00	0,27	1,39	0,00	0,19	0,00	0,00	1,06	0,57	97,86	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,49
BL-msz	6,02	0,00	0,82	0,87	0,06	0,00	0,00	0,00	0,00	0,00	87,34	0,00	0,00	1,22	0,00	0,60	0,00	0,00	3,81
LF	0,11	0,00	0,00	0,00	0,13	0,00	0,00	0,00	0,00	0,00	0,00	100,00	0,00	0,00	0,00	0,00	0,00	0,00	1,06
BL-csem	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,57	0,00	0,00	0,00	100,00	0,00	0,00	0,00	0,00	0,00	1,12
МК	0,00) 2,44	7,36	0,00	0,25	0,00	0,00	0,00	0,00	0,00	0,42	0,00	0,00	91,46	1,35	0,60	0,00	0,00	3,15
МОТ	0,00	0,27	5,87	17,83	0,06	1,31	0,00	0,00	0,00	0,00	0,84	0,00	0,00	3,66	82,09	0,60	0,00	1,28	6,01
VK	0,23	0,00	2,94	1,52	0,00	0,00	0,00	0,00	0,57	0,00	0,84	0,00	0,00	0,00	2,03	90,36	0,00	0,43	3,01
MJ	0,32	0,00	0,62	0,43	0,00	0,00	0,00	0,00	0,57	0,00	0,84	0,00	0,00	0,00	0,34	0,00	99,17	0,00	1,86
FF	0,32	0,00	0,00	0,00	0,00	0,00	0,74	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,01	0,00	0,00	97,86	3,15
Total	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Overall accuracy: 82.24% Kappa: 0.798

Mapping of invasive trees

Thank you for your attention!

Dezső Mikus – mikus@envirosense.hu László Bekő