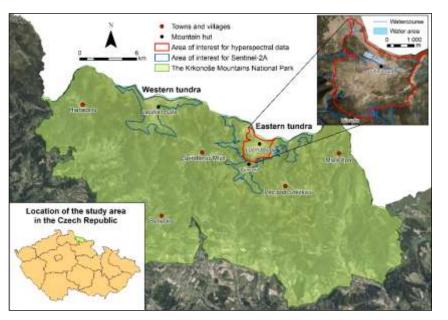
## Classification of tundra vegetation in the Krkonoše Mts. National Park using APEX, AISA Dual and Sentinel-2A Data

#### Lucie Kupková, Lucie Červená, Renáta Suchá, Lucie Jakešová, Bogdan Zagajewski, Stanislav Březina, Jana Albrechtová



Charles University in Prague, Faculty of Science University of Warsaw Krkonoše NP Administration Vrchlabí

SCERIN-5 Capacity building workshop, Pécs Hungary, June 2017


# Starting points

- Tundra ecosystems (alpine treeless) belong to the most valuable natural phenomena worldwide.
- Biotopes above the treeline are very sensitive to various types of environmental factors
- Changes can be very fast in these areas and their monitoring is very important
- Earth observation potentially powerfull tool for the monitoring

# Goals

- To evaluate and compare suitability of aerial hyperspectral data (AISA Dual and APEX sensors) with freely available Sentinel-2A data for classification of tundra vegetation cover in the Krkonoše Mts. National Park.
- Different classification methods (pixel and object-based) were used to find out which classification algorithm for which type of data can bring the most accurate classification results.
- We expected that the best accuracy will be achieved using hyperspectral data with higher spatial and spectral resolution (AISA Dual).
- Further assumption was that in the case of Sentinel-2A data with its limited spatial and spectral resolutions some vegetation (especially grassland) categories will not be distinguishable.

## Study area



Over the years affected by human impacts

The highest parts of the Krkonoše Mts. National above the treeline (1,300 m a. s. l.)

A unique ecosystem, southernmost relict area of the arctic-alpine tundra in Europe

Area of 47 km<sup>2</sup> - 7.4% of the total Krkonoše Mts. Area (Czech and Polish sides). Two parts: Western and Eastern.

As a result of palaeogeographical history the Krkonoše Mountains represent a "biodiversity crossroads" where Nordic and alpine flora and fauna coexist

Besides the mosses, lichens, and alpine heathlands, the prevailing vegetation types are: closed alpine grasslands dominated by *Nardus stricta*, subalpine tall grasslands, and *Pinus mugo* scrub

From the 9<sup>th</sup> century till the beginning of the 19<sup>th</sup> century expanding due to local agricultural practices that included deforestation and grazing

Since early 20<sup>th</sup> century this human impact has been reduced and the area became strictly protected as a nature reserve.



# Data and classification legend

|             | Number of used |                   | Spatial ground |                  |
|-------------|----------------|-------------------|----------------|------------------|
| Sensor      | bands          | Wavelength range  | resolution     | Acquisition date |
| APEX        | 288            | 400 nm - 2,500 nm | 2 to 5 m       | 09/10/2012       |
| AISA Dual   | 494            | 400 nm - 2,500 nm | 1 to 3 m       | 06/19/2013       |
| Sentinel-2A | 10             | 400 nm - 2,300 nm | 10 and 20 m    | 08/30/2015       |

#### Detailed legend

- 1. Block fields and anthropogenic areas
- 2. Pinus mugo scrub (Mountain pine)
- 3. Subalpine *Vaccinium* vegetation (Blueberries, cranberries and bog bilberries)
- 4. Closed alpine grasslands\*
- 4a. Nardus stricta stands (Matgrass)
- 4b. Species-rich vegetation with high cover of forbs
- 5. Subalpine tall grasslands\*
- 5a. Calamagrostis villosa stands (Hairy reed grass)
- 5b. Molinia caeruela stands (Purple moor grass)
- 5c. Deschampsia cespitosa stands (Tufted hair grass)
- 6. Alpine heathlands
- 7. Wetlands and peat bogs
- 8. Water areas (not for Sentinel-2A)

#### Simplified legend

- 1. Block fields and anthropogenic areas
- 2. Picea abies stands (Norway spruce)

3a. *Pinus mugo* scrub dense (more than 80 % of total cover)

3b. *Pinus mugo* scrub sparse (30 – 80 % of total cover)

- 4. Closed alpine grasslands dominated by *Nardus stricta*
- 5. Grasses (except Nardus stricta) and
- subalpine Vaccinium vegetation
- 6. Alpine heathlands
- 7. Wetlands and peat bogs

### **Classification legend**

Block fields and anthropogenic areas Pinus mugo scrub Subalpine Vaccinium vegetation Species-rich vegetation with high cover Nardus stricta stands of forbs Calamagrostis villosa stands Molinia caeruela stands

Alpine heathlands

Wetlands and peat bogs

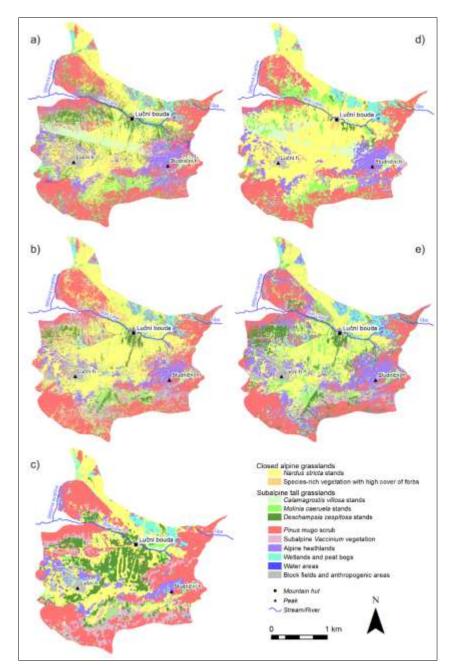
Water areas



Deschampsia cespitosa stands






# Workflow

| Legend type                    |                                        | Simplified legend                                                                                                                          |            |            |  |  |  |
|--------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--|--|--|
| Area of interest               |                                        | Eastern Tundra                                                                                                                             |            |            |  |  |  |
| Training data                  |                                        | 51 polygons (11,388 m <sup>2</sup> ) collected in the field (2014 and 2015) and from orthoimages, specifically edited for each image data* |            |            |  |  |  |
| Image data                     | APEX                                   | APEX AISA Dual Sentinel-2A                                                                                                                 |            |            |  |  |  |
| Number of bands                | PCA 5, PCA 40, 288                     | PCA 7, PCA 40, 494                                                                                                                         | 10         | 10         |  |  |  |
| Pixel-based classification     | SVM NN                                 | SVM NN MLC                                                                                                                                 | SVM NN MLC | SVM NN MLC |  |  |  |
| Object-based<br>classification | SVM                                    | SVM                                                                                                                                        | ]          |            |  |  |  |
| Validation data                | 72 polygons (17,129<br>from orthoimage | Re-classified field data<br>from 2014 adapted for<br>Sentinel pixel**                                                                      |            |            |  |  |  |

\* Edited based on the pixel-size; for Sentinel-2A class "water areas" was not assessed.

\*\* Dataset originally created for Landsat 8 classification in Suchá et al. (2016) edited for Sentinel-2A pixel size.

#### Results for detailed legend (Eastern tundra, all data)



Land cover in the Eastern Tundra of the Krkonoše Mts. for the best classification results of per-pixel and object-based approaches:

a) per-pixel classification: APEX data, SVM classifier, 40 PCA bands;

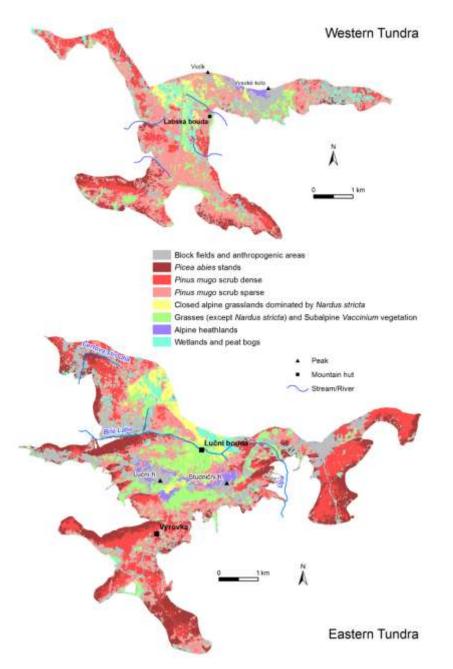
*b) per-pixel classification: AISA Dual data, SVM classifier, 40 PCA bands* 

c) per-pixel classification: Sentinel-2A data, NN classifier (user defined);

d) object-based classification: APEX data, SVM classifier, 40 PCA bands;

e) object-based classification: AISA Dual data, SVM classifier, 7 PCA bands.

#### Results for detailed legend (Eastern tundra, all data) AISA -2A


#### APEX

| Se | nt | in | el | - |
|----|----|----|----|---|
| JC |    |    |    |   |

|                |                | Overall  |             |                              | Overall      | Карра       |                       | Overall  |             |
|----------------|----------------|----------|-------------|------------------------------|--------------|-------------|-----------------------|----------|-------------|
|                | Classification | accuracy | Карра       | <b>Classification method</b> | accuracy (%) | coefficient | Classification        | accuracy | Карра       |
|                | method         | (%)      | coefficient | РСА                          | - 40 bands   |             | method                | (%)      | coefficient |
| PCA - 40 bands |                |          |             | SVM                          | 84.31        | 0.81        | All bands 10 and 20 m |          |             |
|                | SVM            | 82.59    | 0.79        | OBIA SMV RBF                 | 80.66        | 0.77        | NN user defined       | 58.27    | 0.52        |

| Data and classification method                       | pixel-based classification |        |                         |        |                  |        | OBIA                   |        |
|------------------------------------------------------|----------------------------|--------|-------------------------|--------|------------------|--------|------------------------|--------|
|                                                      | APEX (SVM 40 PCA bands)    |        | AISA (SVM 40 PCA bands) |        | Sentinel-2A (NN) |        | AISA (SVM 7 PCA bands) |        |
| Class                                                | PA (%)                     | UA (%) | PA (%)                  | UA (%) | PA (%)           | UA (%) | PA (%)                 | UA (%) |
| 1. Block fields and anthropogenic areas              | 98.60                      | 100.00 | 99.25                   | 98.58  | 92.68            | 95.00  | 99.93                  | 95.11  |
| 2. Pinus mugo scrub                                  | 99.86                      | 94.78  | 99.96                   | 98.45  | 100.00           | 88.51  | 100.00                 | 99.36  |
| 3. Subalpine Vaccinium vegetation                    | 8.54                       | 100.00 | 63.90                   | 50.19  | 65.38            | 45.95  | 53.15                  | 87.66  |
| 4a. Nardus stricta stands                            | 73.44                      | 86.01  | 83.73                   | 71.38  | 46.02            | 54.17  | 79.24                  | 73.27  |
| 4b. Species-rich vegetation with high cover of forbs | 86.84                      | 44.59  | 55.32                   | 60.00  | 50.00            | 35.29  | 81.22                  | 33.06  |
| 5a. Calamagrostis villosa stands                     | 63.95                      | 49.74  | 55.03                   | 87.29  | 31.82            | 43.75  | 76.20                  | 82.62  |
| 5b. Molinia caeruela stands                          | 64.54                      | 59.87  | 66.78                   | 75.22  | 15.00            | 60.00  | 79.15                  | 44.94  |
| 5c. Deschampsia cespitosa stands                     | 87.31                      | 68.25  | 85.10                   | 85.81  | 57.50            | 26.44  | 63.49                  | 89.76  |
| 6. Alpine heathlands                                 | 90.36                      | 82.14  | 81.60                   | 83.80  | 37.78            | 42.50  | 66.11                  | 73.13  |
| 7. Wetlands and peat bogs                            | 58.56                      | 80.30  | 63.46                   | 86.74  | 56.76            | 91.30  | 40.24                  | 85.07  |
| 8. Water areas                                       | 100.00                     | 100.00 | 98.80                   | 100.00 | х                | х      | 100.00                 | 100.00 |

#### Results for simplified legend – Sentinel-2A



| Classification method                 | Overall accuracy (%) | Kappa coefficient |  |  |  |  |  |
|---------------------------------------|----------------------|-------------------|--|--|--|--|--|
| all bands 10 a 20 m simplified legend |                      |                   |  |  |  |  |  |
| MLC                                   | 77.73                | 0.74              |  |  |  |  |  |
| SVM                                   | 70.99                | 0.67              |  |  |  |  |  |
| NN (default)                          | 76.21                | 0.73              |  |  |  |  |  |

### Conclusions

- Best classification results for the hyperspectral data with the highest spectral and spatial resolution, i.e. AISA Dual data, comparable for APEX data
- Best results both types of hyperspectral data: SVM classifier
- Best results Sentinel-2A data in the case of simplified legend, NN and MLC methods achieved better results than SVM.
- Important definition of legend categories different for different spatial resolutions
- We have to improve classification accuracy of grassland categories
- Results for Sentinel-2A promissing, especially for Sentinel-2A in tandem with Sentinel-2B in time series
- Next improvement UAV with hyperspectral sensor high spectral and time resolution, biophysical parameters (chlorophyll, fAPAR, biomass, LAI etc.), upscaling to Sentinel
- Earth observation powerful tool for tundra ecosystem monitoring, management and presevation

### THANK YOU FOR YOUR ATTENTION!



#### lucie.kupkova@natur.cuni.cz

Charles University in Prague Faculty of Science Department of Applied Geoinformatics and Cartography

Article in European Journal of Remote Sensing: http://www.tandfonline.com/doi/full/10.1080/22797254.2017.1274573

#### ACKNOWLEDGEMENT

We a sup of

This research was made possible by the Charles University in Prague project GAUK No. 938214 and Ministry of Education, Youth and Sports of the Czech Republic project NPU I LO1417 Our thanks belong also to botanists Stanislav Březina and Jan Šturma for their help during the fieldwork.

SCERIN-5 Capacity building workshop, Pécs Hungary, June 2017