

Identification of vulnerable zones for nitrogen leaching in arable land using airborne hyperspectral and space borne multispectral data

Zemek F., Pikl M., Rodriguez-Moreno F., Brovkina O.

Global Change Research Institute, CAS Brno, Czech Republic

Motivation

Protection of ground water for drinking from pollution caused by intensive agriculture practices on arable land in the areas feeding aquifers - leaching of pesticides and fertilizers (nitrogen)

High hydraulic-conductivity aquifer

Low hydraulic-conductivity confining unit

Very low hydraulic-conductivity bedrock

SCERIN 2017 - Pecs, June 20-23

Direction of ground-water flow

Objectives

To identify the **areas with high risk of N leaching** to underground water in arable land - cca 200 km²

Hypothesis

Potential sites where nitrogen can leach to underground water identified from geological and soil properties are related with spectral features of wheat canopy derived from airborne hyperspectral and/or Sentinel-2 data

Landsat TM5 1986

Sentinel-2 2016

Elevation [m]

Slope [°] SCERIN 2017 - Pecs, June 20-23

Methods - "conservative" features

Methods – "dynamic" features

Soil types and forest cover

Hydraulic properties of soils	Class
High infiltration (> 0,12 mm.min ⁻¹) – deep	^
sand and gravel	A
Medium infiltration (0,06 - 0,12 mm.min ⁻¹) -	
deep and medium deep soils, well drained,	В
loamy and sandy soil	
Low infiltration(0,02 - 0,06 mm.min ⁻¹) - silt	6
and silty-clay soil	C
Very low infiltration (< 0,02 mm.min ⁻¹) - clay	
soils and shallow soils above unpermeable	D
bedrock	

Extent of vulnerable area in arable land

Vulnerability	Vulnerability	Degree of	Arable	Drained
of rocks	of soil	vulnerability	land [%]	soils [%]
1	A, B, A-B	high	71,53	21,28
2	В-С, С	medium	21,81	41,23
3	C-D, D	low	6,67	6,85

Heterogeneity in blocks - N content in AGB

Regression models: N vegetation indices x chemical analyses

Variability of nitrogen in above ground biomass calculated from regression model, CASI 5. 6. 2015

NDVI – the background

Coefficient of variantion 19.09 - 19.92 18.24 - 19.08

Variability of nitrogen in above ground biomass calculated from regression model CASI 6. 5. 2016

NDVI – the background

Variability of nitrogen in above ground biomass calculated on regression model Sentinel-2, 23. 5. 2016

Synthehesis of indicatores for N leaching in arrable land from the rocks and soil propeties, and CASI 2015, 2016 analyses of wheat biomass

SCERIN 2017 - Pecs, June 20-23

HotSpot analysis of N content

Conclusions

A hotspot analysis of vegetation indices carried out in each wheat field, revealed:

1/ Highest spatial variability of Vis in the most vulnerable class

2/ Spatial context between "hot and cold" places in neighbouring fields no matter what the total concentration of N in biomass was

3/ Results of hot spot analyses of spectral properties derived from multispectral Sentinel-2 data and from airborne hyperspectral CASI display similar spatial patters

Next steps – validation of vulnerable sites from time series and different phenology of crops

This also creates **high potential of application of the Sentinel-2** data in agriculture management, especially **in targeted application of nitrogenous fertilizers** and hence protection of environment

Thank you for your attention

zemek.f@czechglobe.cz