Preliminary outcomes and challenges in modeling of grass biomass using remote sensing

FINEGRASS Norway-Poland Grant Nov 2013 – Oct 2016

Gregory Taff, Jørgen Mølmann, Marit Jørgensen, Francisco Javier Ancin Murguzur, Ilina Kamenova, Monika Tomaszewska, Stanislaw Twardy, Piotr Golinsky, Piotr Golinski, Marek Czerwinski, Barbara Golinska, Katarzyna Dabrowska-Zielinska Effect of climatic changes on grassland growth, its water conditions and biomass

- Funding from Norway-Poland grant scheme: 3 993 042 PLN (973 106 EUR)
- Project Promoter: Institute of Geodesy and Cartography in Warsaw (PI: Prof Dr. Hab. Katarzyna Dąbrowska-Zielińska)
- Norwegian partners (officially merging on July 1 NIBIO)
 - Norwegian Forest and Landscape Institute
 - Norwegian Institute for Agricultural and Environmental Research, Center for Arctic Agriculture and Nature Use
- Polish partners
 - Institute of Technology and Life Sciences, Malopolska Research Centre in Krakow
 - Poznan University of Life Sciences, Department of Grassland and Natural Landscape Sciences

Objectives

- Develop methods to estimate grassland yield based on remote sensing data
- Model grass growth with environmental variables under multiple growing conditions
- Assess recent climatological and phenological changes/trends in study sites, and their effect on grassland growth

Poland Field Sites

1. Biebrza National Park

2. Arable lands of Greater Poland Voivodeship

3. Vicinity of Jaworki

Satellite Data

- Poland
 - MODIS for biomass/feed quality modeling and ground temperature estimation
 - NOAA/AVHRR for biomass prediction and monitoring phenology
- Norway
 - Landsat, UAV for biomass/feed quality modeling
 - MODIS for tracking phenology since 2000

Field Data Collected 2014, 2015

- Field data collected 3 times/season on grassland fields include (some data collected, as appropriate, in only one country):
 - Biomass
 - Wet and dry weight measured
 - Cut at 5cm height and also at ground level (all)
 - Species mix (visual estimate of 3 most prominent species)
 - Handheld spectral data LAI, chlorophyll content, radiometers (4-band in Poland, hyperspectral in Norway)
 - Soil temperature
 - Soil humidity (between 5 and 15 cm depth)
 - CO₂ exchange using an enclosed transparent plastic chamber
 - CO₂ gas concentration and air temp measured with a portable non-dispersive infrared (NDIR) sensor
 - Plant temperature, taken by infrared thermometer

Hyperspectral radiometer

Specific Challenges in Grasslands

- Yield vs. biomass (cut 5cm height vs. ground level)
- Lodging (grass falling down under its own weight) changes spectral signal
- Grazed grasslands modeling yield challenging in real pastures due to constant grazing
- Accounting for ley year in models (the number of years after grass was sewn)
- Accounting for species mixes and weeds
- The percent of soil showing through the grass particularly choosing locations for handheld spectrometer when significant variation exists in amount of soil visible

Specific Challenges in Grasslands

- Soil moisture data:
 - Significant within-field variability, especially at different elevations
 - Likely to be highly influenced by amount of recent precipitation
- For spectral measurements (spectrometers, LAI) and CO₂ exchange, quickly changing cloud conditions (by the minute/second) can significantly influence readings

Field and Satellite Data Compilation

Landsat images overlayed with transect and pseudo-Landsat images (from FieldSpec) at Holt (Tromsø) study site

Yield modeling from hyperspectral Field Spec data

- Modeling **biomass**, chlorophyll, LAI
- Predictor: FieldSpec hyperspectral data (350nm 2500nm, at 1nm intervals)
- Data from 8 field-dates (2014): 3 fields at 3 time points (originally 9, but 1st date Holt field eliminated)
- Total of 46 points put into models

Processing Steps for FieldSpec data

- Eliminated noisy ranges in electromagnetic spectrum of FieldSpec samples corresponding to atmospheric water absorption
- Smoothed each sample spectrum using a Savitzy-Golay filtering procedure
 - Window size: 15nm
 - Derivative order: 1
- Averaged three samples for each point

Grass Biomass Modeling

- North Norway data only
- We used Partial Least Squares Regression (PLSR) to model biomass
- PLSR reduces the massive amount of hyperspectral data to a few components (linear combinations of the hyperspectral data points) to *maximize correlation with the outcome variable*
- Data was split (systematically instead of randomly due to small sample size) into 2/3 calibration and 1/3 validation

Dry Weight Biomass Model

Modeling Plans

- Add 2015 data to improve models
- Test models with Landsat and pseudo-Sentinel-2 from handheld hyperspectral sensor
- Incorporate environmental variables into models
- Test models on one time period only (early, mid, or late) to see how accurately models predict small differences in biomass, etc.
- Hyperspectral FieldSpec will also be used to estimate Landsat reflectance

Poland model:

AVHRR (satellite)/CORINE vs. Central Statistical Office data

Model: *Yield = 0.2 - 0.66*F1 + 0.73*F2 + 0.92*F3 + ɛ* Mean Absolute value Percent Error *(MAPE) = 4.5%*

Data from 9 years with cloud-free images between 1997 and 2014

PCA – Principal Components

ndvi/ts	Factor Loadings		
In decades	F1	F2	F3
ndvi-07	0.08	0.91	0.18
ndvi-08	-0.00	0.55	0.29
ndvi-09	0.23	0.35	0.24
ndvi-10	0.05	0.01	0.49
ndvi-11	0.03	0.06	0.88
ndvi-12	0.23	0.29	0.86
ndvi-13	0.69	0.14	0.44
ndvi-14	0.71	0.26	0.41
ndvi-15	0.57	-0.19	0.41
ts-07	0.28	0.48	0.08
ts-08	0.35	0.10	0.10
ts-09	0.45	-0.03	0.23
ts-10	0.61	-0.29	0.29
ts-11	0.81	-0.02	0.15
ts-12	0.84	-0.06	-0.01
ts-13	0.88	0.22	0.16
ts-14	0.87	0.12	-0.15
ts-15	0.64	-0.06	0.30

Interpretation:

F2: start of vegetation; F3: ndvi in April;F1: Surface Temperature in April-May