

Transilvania University of Brasov

Faculty of Silviculture and Forest Engineering

Mapping forest disturbances by combining Landsat image composites and Unmanned Aerial Systems

Mihai Daniel NIȚĂ, Ioan Vasile ABRUDAN

Transilvania University of Brasov Faculty of Silviculture and Forest Engineering

Forest disturbances

- Forest disturbance and recovery are critical ecosystem processes and an improved monitoring of changes in forest structure is needed to quantify natural and human impact on forest systems.
- Landsat's temporal and spatial coverage, moderate spatial resolution, and long history of earth observations provide a unique opportunity for characterizing vegetation changes.

Forest disturbances

 On macro level, mapping forest disturbances with Landsat offers a large view on forest disturbances which occur during a management cycle.

EXAMPLE: The Vegetation Change Tracker algorithm uses the spectraltemporal properties of Landsat Time Series Stacks to produce forest disturbance products (from Huang et al. - 2010)

Present context

- Where forestry in the past focused on the production of a few commodities, the evolution to small scale forestry demands that new ways of forest management and monitoring to be adopted.
- These methods should combine past knowledge with innovative management planning strategies and up-to-date technology.

Forest ownership in Romania

Source: National Forest Inventory, 2013

Present context

- From manager point of view, mapping forest disturbances with Landsat does not solve the entire problem.
- The lack of information which Landsat low spatial resolution cannot provide related to the disturbance (e.g. windthrow vs. illegal logging, clear cut vs. final cut) makes the method less attractive.

UAS high spatial resolution (0.05 m/pixel)

Landsat low spatial resolution composite (30m/pixel)

Present context – Problem?

- Due to economical issues, in many cases, is preferred a more detailed analysis of the problem using on-site observation, than using a previous analysis based on high resolution remote sensing method.
- The forest managers need their information as fast and accurate it gets to take the decision
- The reason?.... Not only the PRICE ... the lead time is a reason too.

Satellite product	Price	Lead time
IKONOS (1m)	Minimum order = 2000 – 3600 \$	30 – 120 days
Digital Globe (0.6 m)	Minimum order = 1500\$	30 – 120 days
Worldview 2 (0.5)	Minimum order = 2200\$	30 – 120 days
		50 120 ddy5

Source: Walsh Environmental Scientists and Engineers

Present context – Solution?...UAV

- A product fast enough, accurate enough and cheaper enough to serve small scale forest managers
- Nowadays UAS (Unmanned Aerial Systems) technology is rapidly growing and extending. UAS make up the aerospace industry's most dynamic growth sector.
- According to a recent market study, UAV (Unmanned Aerial Vehicles) spending is on pace to double during the 2010 – 2020 period, from current worldwide expenditures of 4.3 billion euro annually to 8.2 billion euro, totalling just more than 68 billion euro.
- Although started as hobby for model plane enthusiasts, civil drone technology expanded especially in remote sensing area.
- The reasons are simple: they are cheap, easy to use and offer high resolution products in short time. Based on this, a high resolution remote sensing method becomes attractive to forest managers interested in mapping forest disturbances.

Methodology

UAS – Unmanned Aerial System ANEMOMETRU TERMOMETRU SONOMETRU MODUL GP BAROMETRU MAGNETOMETRU MODUL DE NAVIGATIE EMISIE-RECEPTIE **UAV Model and Simulation** Waypoints Apparent diplocement due to terrols Waypoint Table Terminator emd airframe data **Ground Control Station Unmanned Aerial Vehicle** toFlightGear Systems Model Environment

Steps in producing UAV data

- Identifying the area
- Producing the Flight plan
- Data acquisition

- Data processing (Structure from Motion)
- Georeferencing
- Extracting the products

Flight plan

Flight plan

Data acquisition

Data processing

Georeferencing – ground control points

Label	X error (m)	Y error (m)	Z error (m)	Error (m)	Projections	Error (pix)
point 1	0.007806	-0.016210	0.025177	0.030945	11	1.106495
point 2	-0.012901	0.014468	-0.168445	0.169557	6	2.113992
point 3	-0.019241	-0.021600	-0.065353	0.071469	13	0.505121
point 4	0.033561	0.041795	0.192248	0.199581	7	0.548978

Georeferencing

BEFORE using ground control points

Markers	Longitude	Latitude	Altitude	Error (m) 🔽	Projections	Err_
point 16	26.444314	46.871854	296.388000	229.166407	3	
point 19	26.439904	46.884872	301.077000	151.626531	2	
point 18	26.447040	46.875023	296.374000	127.333327	3	
D P point 8	26.432237	46.884495	303.179000	87.364716	3	
point 7	26.426911	46.887761	305.631000	55.277115	4	
point 5	26.427311	46.890561	304.940000	47.798199	3	
point 23	26.427162	46.895041	306.413000	46.714267	3	
P point 3	26.423917	46.893043	307.202000	33.330029	4	
D Doint 4	26 421333	46 891809	305 716000	29 878193	5	
P noint 1	26 416868	46 896683	309 578000	25 231909	1	-) Č

AFTER using ground control points

Markers	Longitude	Latitude	Altitude	Error (m) 🗸	Projections	Err
🗆	26.426911	46.887761	305.631000	2.642843	4	
Dint 5	26.427311	46.890561	304.940000	1.089449	3	
De point 1	26.416868	46.896683	309.578000	1.015263	5	
Dint 2	26.418905	46.894747	308.517000	0.700830	5	-
🗹 🏴 point 3	26.423917	46.893043	307.202000	0.534738	4	
Dint 4	26.421333	46.891809	305.716000	0.443556	5	
point 21			Franker Standard		3	
🗆 Þ point 20						
🗆 🖻 point 22						
A point 24						•

Results

Ortorectified mosaic

Digital Surface Model (DSM)

Digital surface model

CASE STUDY: LUGOJ. Covered Area 15 square kilometers

RESULTS

Synthetic data

- Flight area: 1500 hectares
- Flight time: 1 day
- Data processing: 3 days
- Georeferencing: 1 day
- Flight Costs: 80 euro

Elevation from terrestrial measurements (m)

Elevation precision

Error in meters

Elevation from terrestrial measurements

CASE STUDY: Dobrești. Covered area 30 square kilometers

RESULTS

Synthetic data

- Flight area: 3000 hectares
- Flight time: 2 day
- Data processing: 3 days
- Georeferencing: 1 day
- Flight Costs: 160 euro

CASE STUDY: OITUZ. Covered area 100 square kilometers

RESULTS

Synthetic data

- Flight area: 10000 hectares
- Flight time: 4 days
- Data processing: 6 days
- Georeferencing: 1 day
- Flight Costs: 600 euro

Examples – Digital Surface Model

Conclusions

- UAS technology of taking photos with UAV and obtaining complex info as digital surface model and orthorectified mosaic represents an innovative methodology
- The techonology offers rapid response (few days) on quite large areas (400 hectares/hour)
- The costs of producing data are lower than the actual market

Conclusions

Start-up

UAV: 5k – 70k Euro Pilot training: 1000 euro Processing computer: 2000 euro

Total : starting from 10000 euro

Thank you for attention!