

University of Hohenheim Germany

UNESCO chair-Life Sciences, Armenia

Development of Measures for a Sustainable Shore Management of Lake Sevan (Armenia) on base of Shore Vegetation as Bioindicators by Application of Remote Sensing and GIS techniques (SEMIS) *(funded by VW-Foundation)*

Lilit Vardanyan, Klaus Schmieder, Hovik Sayadyan, Thomas K. Agyemang, Joerg Heblinski

The SEMIS Project

A cooperation between :

- University of Hohenheim, Stuttgart (Germany)
- State Agrarian University, Yerevan (Armenia)
- University of Vanevan, Martuni (Armenia)
- EOMAP GmbH & Co. KG, Gilching (Germany)

Study site

Lake Sevan (Armenia)

- one of the greatest freshwater highmountain lakes of Eurasia (1898m above Baltic Sea)
- largest water body in the Transcaucasus Region (surface area of 1243km²)
- the biggest source of drinking water for Armenia and its adjoining countries

The Sevan Problem

 Lowering of lake level by 20 m for water power and irigation and uncontrolled pollution from agriculture, industry and municipalities **Objectives:**

- Development of automated classification algorithms for shore vegetation from multispectral satellite data
- Setup of a geographic information systems of shore vegetation structures of lake Sevan
- Development of assessment tools on base of classifications of shore vegetation structures
- Prediction of changes in shore vegetation due to water level fluctuations

•Importance of macrophytes in accumulation of

Lake Sevan, Armenia

- Lake Level: 1921 m above the Baltic Sea level
- Surface Area: 1243 km²
- ✤Length: 75 km
- ✤ An average Width of 19 km

Water level of Lake Sevan in 1990-2008

Μ

Methods of SEMIS project

Remote sensing techniques

GIS-Analyses

Ground truth

Remote Sensing Data

Satellite data from MODIS sensor

on EOS Terra/Aqua

- 36 spectral bands : 407nm 14385nm
- Spatial resolution : 1km up to 0.250 m
- Used for algorithm : 10 bands in VIS / IR, spatial resolution of 1km
- Input data for algorithm : calibrated radiances at sensor

Remote Sensing Data

Landsat images

- from different decades with beginning of 1970's
- as snapshot of whole situation of lake Sevan
- Spatial resolution ~30 m, spectral resolution: 7 bands
- for historical review

Remote Sensing Data

QuickBird images of 4 ROIs (2006, 2007, 2008)

- on demand and from archive
- Spatial resolution 2.7 m
- for classification of littoral zone

MIP Modular Inversion & Processing System

Software developed by Dr. Thomas Heege, Dr. Viacheslav Kisselev & Sabine Miksa

exploited and enhanced EOMAP GmbH & Co. KG, Gilching/Germany

http://www.eomap.de

Ground Truthing

Time series of 2006 – Chlorophyll a

Time series of 2006 – Suspended matter

QuickBird 2007 Classification - ROI Hrazdan-Tsovazard and Gavaraget

QuickBird 2007 Classification - ROI Hrazdan-Tsovasard

QuickBird 2007 Classification - ROI Hrazdan-Tsovasard

Water depth retrieval QuickBird 2007 - ROI Hrazdan-Tsovasard

Consequences for Lake Sevan

- The littoral zone of Lake Sevan plays very crucial roles in its ecological functions
- It is critical that sustainable lake management systems take into account littoral zone development
- Lake level fluctuations affect predominantly the littoral zone

Mapped Macrophytes

SPECIES	Veg_Type	Growth_Type
Agrostis stolonifera	Emersed	
Bolboschoenus maritimus	Emersed	
Carex disticha	Emersed	
Ceratophyllum demersum	Submersed	Low
Chara spp.	Submersed	Low
Cladophora spp.	Submersed	High
Cyperus spp.	Emersed	
Hippuris vulgaris	Submersed	High
Myriophyllum spicatum	Submersed	High
Phragmites australis	Emersed	
Persicaria amphibia	Emersed	
Potamogeton filiformis	Submersed	High
Potamogeton pectinatus	Submersed	High
Ranunculus circinatus	Submersed	High
Ranunculus spp.	Submersed	High
Schoenoplectus lacustris	Emersed	
Sparganium erectum	Emersed	
Sparganium ramosum	Emersed	
Thypha angustifolia	Emersed	
Thypha latifolia	Emersed	
Zannichellia palustris	Submersed	Low

Outlook

- Improvement of classification algorithms of satellite images to obtain accurate classifications of shore vegetation structures
- Development of tools for the assessment of the ability of the littoral zone to provide its ecological functions
- Model of development of shore vegetation and ecological functionality in dependence to further water level rise

The SEMIS team

Questions and discussion

